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Preface
Essential Regression and Experimental Design for Chemists and Engineers was
developed as an easy-to-use book with an accompanying software package which allows
non-statisticians to analyze experimenta designs and quantitative data using polynomial
and multiple linear regression in a straightforward and understandable manner. From our
experience as chemists and engineers, these two variations of regression anaysis are the
ones used most often to analyze data. They are the "essential” toolsin data analysis.
Recognizing the widespread use of Microsoft OfficeO software, we developed Essential
Regression software asaMS ExcelO Add-In (compiled Excel Macro). The user can
work in the familiar and powerful data analysis environment of Excel and does not have to
learn a new statistical software package. Other benefits from working directly in Excel are
that it trivializes some of the most time consuming steps of regression analysis when
compared to large conventional packages because the entire input and output of the
regression lies within a standard spreadsheet workbook which eliminates the need to learn
anew interface. They include:

1. setting up datainput tables

2. creation, customization and printing of graphs

3. transfer of the regression analysis to other software packages (word

processors, presentation software) for afinal report

4. printing, saving, and recalling old results

The book and software are intuitive and guide the reader through the process of setting up
aregression model and analyzing it. The software also contains an on-line help file which
contains thumbnail descriptions of the significance of the output of the regression analysis
and detailed instructions on how to use the software. This help file is no substitute for

reading and understanding the book.

The book and software describe and implement all the tools needed for a complete linear
regression analysis. Up to about 20 independent variables or regressors can be selected in

amultiple regression, and second and third order models (including interactions) can easily



be set up using the built-in dialogs. In the Polynomia Regression module, up to ninth
order polynomials can be constructed. There are limitations with respect to the number of
data points. The accompanying software is best suited for small and intermediate data sets
of 50 to several 100 data points. Thisis a size which most often occursin "everyday
problems" encountered by students and scientists. It was not developed to handle large
data sets of several thousand and more data points used by, for example, sociologists or

pharmacological researchers.

The following approach is repeated throughout the book. A theoretical discussion of a
statistical technique is presented followed by chapters which explain the features of the
software pertaining to the theory discussed before. The sequence in which the theory is
introduced follows an order which is most likely employed by the user: introduction to
regression and types of models, ANOVA, hypothesis testing, outlier analysis, and
graphical evaluation including surface plots. At the end of the book, atutorial isincluded
with data sets (also included in the Excel spreadsheets which come with the software)
which are analyzed to illustrate the utility of the software. All the analyses presented can
readily be reproduced by the reader. The book starts with the usual discussion of
coefficient of variation and ANOVA analysis. It contains a variety of sections on different
statistical parameters and residual analyses useful for model adequacy checking. For
example there are sections on stepwise regression ("auto fitting") techniques, the effect of
response and factor transforming, and the detection of outlier, influence and leverage
points. Although the treatment of linear regression is very complete, the book is not
intended as a fundamental theoretical textbook of linear regression aimed at statisticians.
It isintended to teach regression to non-statisticians by applying linear regression to rea
data sets.

Experimental design is covered as it relates directly to regression analysis. Thisrestricts
the design package to factors and responses that are continuous, quantitative variables.
Screening designs including full and fractional (Resolution 3-5) 2 level factorial and

Plackett-Burman designs are covered. Response surface modeling (RSM) designs



including face centered, circumscribed and inscribed central composite designs and Box-
Behnken designs areincluded. The advantages and disadvantages of the various design
types are covered. Advanced ideas such as aliasing, orthogonality, rotatability and

sequential experimentation are explained.

The software accompanying Essential Regression and Experimental Design for Chemists
and Engineers delivers all the tools necessary for a thorough, compl ete experimental
design and linear regression analysis combined with easy handling and impressive output
possibilities which rival the features of much more expensive and much less intuitive

stati stics packages.

Even as we go forward toward an electronic society, traditiona publishing media (books)
show no signs of being dethroned as the way to learn detailed technical concepts.
However, books with illustrative examples and software that can be immediately applied
do represent a vast improvement over a solely traditional approach. We believe that this
"learning by doing" approach, along with a reasonably complete fundamental treatment
represents an ideal way to learn new and useful technology. Thisis especialy true for
well-known and well defined concepts such as regression. We hope that you find
Essential Regression and Experimental Design for Chemists and Engineers a good

example of this new hybrid type of book.

Dave Steppan
Joachim Werner
Bob Y eater
Gibsonia, PA
Bethel Park, PA
Moundsville, WV
June 1998
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1. Regression Models, Variables, Coefficients

1.1 Theoretical Background

1.1.1 Introduction to Linear Regression

“Regression” is derived from the Latin word regredi meaning “to go back to”, or to “take
refuge to” or “to resort to”. Actualy, when we perform a“regression”, we are taking
resort to approximating an observed, empirical variable (output, response) by an estimated
one, based on afunctional relationship between the estimated variable (we will call it yes)
and one or more regressor or input variables X3, X, ...X; . We often have to do this when
we try to describe data sets, when parameters in known scientific equations have to be
estimated, when we try to develop new models describing and even predicting a specific

response, or when we try to control and optimize processes.

The value of the estimated variable y.« depends on the functional relationship with the
regressors or input variables and therefore ye is aso called “dependent” variable. Idedly,
the regressor variables do not depend on anything el se than the will of the data analyst,
who can chose their settings. Thus, they are called “independent” variables.

Developing this functional relationship we have to keep in mind that we cannot expect
empirical datato be explained without any residual doubt. What we actually try to do isto
“explain” the response with the set of the input variables as well as possible. This means,
we have to account for the residual ambiguity the error contribution. Possible sources for
error are random or measurement error, and the “lack-of-fit” error caused by the
inaccuracies of our estimation function. Our ultimate goal in regression isto minimize this

lack-of-fit error.

One can easlly see that the functional relationship between yes and the regressors can take

many forms. The same s true for the definition of the estimation error and the way to
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minimize it. These are the reasons for the numerous variants within the area of regression

analysis.

Linear Regression smply means that the functional relationship between y. and the
regressors can be expressed by alinear equation or, in other words, a sum of terms

including the error:
Yeq = Dy +bX, + b,X, +...4 b;x; + error Eqg. 1-1

For the case of only one regressor variable (x;), equation (1-1) can be reduced to the
familiar equation of a straight line, plus the error term, with by being the intercept, and by

being the slope:
Ve = Dy +DbyX, +error Eqg. 1-2

Equation (1-2) describes the case of “simple”’ Linear Regression, giving us the best fit line

through data points in a x-y-plot.

1.1.2 Transformation of Variables

With more than one independent x variable, we perform Multiple Linear Regression,
sometimes contracted to Multiple Regression, athough the term “linear” is essential for
defining the method. Let us use the letter | as an index for the independent variables
running from 1 toi. In equation (1-1), by isreferred to as the constant term, meaning it
gives the expected value for y with all x; set to zero. The b, are the regression coefficients
for the respective x;. Simply put, they describe to the magnitude of the effect of a unit
change of the corresponding x; given that the other regressors present are kept constant
(the coefficient b for agiven x; without the other independent variables present could be
different!). If x, changes from 1 to 2 units, and the other regressors are kept constant, Ve

will change to ye + 1. To make the individual b independent of the scaling units of the
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variables and thus comparable with respect to their magnitude, the independent variables

and also the response can be transformed.

The transformation techniques commonly used consist of a centering of the variables
which can be followed by a normalization step to transform the scale (also called scaling

of the variables).

Centering can be done by simply subtracting the average over al data points of agiven
regressor variable x; (or the response y) from the variable at the given data point. In
addition to that, adivision by the respective average transforms all the variablesto the
same scale. We will use the index k for the data points, with k running from 1 to n (the
total number of data points). Following equation exemplifies these procedures for the
independent variables, x;:

Zy = X - Xy Eqg. 1-3

z, =—F— Eq. 1-4

In the so-called unit normal scaling, for a given data point, the difference between a
variable xjx (yx) and the average of the variable over all data points,” x« (" y«), is divided by
the sample standard deviation (s) of this variable. The scaled variables have a mean of zero

and a standard deviation and variance of 1.

z, = Eq. 1-5
jk Sk q
3 —2
é (Xjk - Xk)
2 _ k=1
S = — Eqg. 1-6
! n-1 q
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The unit length scaling uses the so-called corrected sum of squares instead of the standard
deviation. The corrected sum of squaresis smply the numerator of the expression for
sample variance, i.e., the sum of the squared differences between individual variable and
the average of the variable over all data points. This leads to variables with a mean of zero

and a“unit length” of 1.

X - X
jk k
Eq. 1-7
k 2
J Sij
Sy = é (X - X_k)2 Eqg. 1-8

When applied not only to the independent variables, but also to the response, al these
scaling techniques remove the constant term by or the intercept from the model equation
or, in other words, the estimate for the constant term b, becomes zero by definition. The
new regression coefficients obtained after scaling are so-called standardized regression
coefficients (sometimes called betas). Many statistical computer programs scale the model

variables by default and report both betas and “raw” regression coefficients.

The main reason for using scaling techniquesis to reduce the possibility of round-off
errors in the calculations when using the raw variables, especidly if these variables differ

significantly in magnitude.

1.1.3 Regression Model Equations

It isimportant to realize that linear regression aso includes model equations which contain
“higher-order terms’ (quadratic, cubic, etc.) derived from the independent variables. The
functional relationship between y4 and the x; hasto be linear in the coefficients by, not
necessarily linear in the x;! For example, the following equation (1-9) is also alinear

regression model equation:

—_ 2 2
Yesr = B + biX; +b,X, + DX, X, +b,X7 +bsx; + error Eqg. 1-9
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With
X3 = X1Xo
X4 = Xi°
X5 = Xo°

Equation (1-9) becomes the obviously linear equation (1-10):
Yoo = by + bX; +Db,Xx, +bX; + b,X, +b.X; + error Eq. 1-10

A polynomial such asin equation (1-11) used to approximate our response variable also

constitutes alinear regression model, sinceit islinear in the coefficients b:
Yoo = by + b, +b,x2 + b,x’ + error Eqg. 1-11

This special caseisreferred to as Polynomial Regression Model. It isjust another variant

of the general Linear Regression method.

Equation (1-9) represents what we refer to as a full quadratic model equation or full
second order equation. It contains two linear terms or first order terms x; and x,, their
squares or second order terms x;% and x,%, and the second order interaction x,x, between
the two linear terms. Thisis a very common model for responses depending on two
regressors analyzed by Linear Regression. It can be modified to a second order model
without the interaction, or to amodel with linear terms and their interaction only. Second
order or quadratic models, either complete or restricted, are frequently used for Linear
Regression. Third order models (cubic terms or third order interactions, such as xix,Xs, Or
X1°X,) are less common. Generally, the higher the order of the model, the more likely the
model equation simply “connects the dots’ of the data points rather than fits a meaningful
regression function through the data. This effect can easily be reproduced when using a
software package such asMS Excel® to fit a polynomial curve through data points while
consecutively increasing the order of the polynomial. Our goal in Linear Regression isto
find the best of all approximated functions without just connecting the dots, i.e., without

simply fitting the error.
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Sometimes apparently nonlinear relationships can be transformed into model equations

suitable for linear regression:

Eq. 1-12

becomes

Iny = Inb, + Inx,-b,X, Eq. 1-13

Equation (1-13) obvioudy can be used as a model equation for linear regression with one
response (Iny), a constant term (Inb,), and two regressor terms (Inxy, box,). However, be
aware that we have performed a nonlinear transformation. Therefore, the estimates of the

coefficients may differ from a nonlinear regression using the original variables!

1.14 The Least-Squares Method
The method used to find the coefficients b of our general model equation (1-1) is called

least squares estimation. This means that the error term we used in the model equationsis
defined as the difference between observed response variable y and estimated ye for a
given setting of the x; at each data point. The total error must somehow be defined by
summations over al data pointsor “cases’. Since we assume a random distribution of the
individual errors with amean of zero, a ssimple summation would ideally lead to zero. At
least it leads to negative and positive differences canceling each other out. This can be
avoided by sguaring the errors for each data point and sum these squares. The desired
optimum regression model then has to give us a minimum for this sum of squared errors,

hence “least squares estimation method”.

A set of data consisting of n points can be considered a sample of the entire “population”
of data points. A given point or “experiment” is defined by the settings of the i input
factors or independent variables xy, Xa,..., Xi of our model and the dependent variable or

response y at that given experiment or “run”. Whereas the general equation (1-1) can be
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considered the “population model equation”, our data set forms a system of n linear
sample equations:

experiment, run sample equations, Eq. 1-14a-c

1 y, = by + b X, +b,y%,, ...+ b X, +error;
2 y, = by, +b,x, +b,x, +...+ bx, + error
n Y, = by, +bX, +b,X,, +...+ b X, + error,

Each of these equations can be rearranged to bring the error term on the left side. Then

the square of the sums of all error terms can easily be defined:

experiment, run sample equations for error, Eq. 1-15a-c

1 error=y, - by, - bX; - bXy - bX,
2 error,=y, - by, - bX, - bX,, -.- BX,
n error,=y, - by, - byx;,, - b,x,,-...- bXx,

Again, using k as the running index for the n experiments or data points and j as the index
for the i independent variables, the Sum of Squared Errors (SSE) is obtained by summing
the squares of the right hand sides of the equations above:

SSE = é (YK - bo' blxlk - b2X2k Tee” bi Xik)2

k=1

SSE=Q (v, -by- & bix, )?

k=1 j=1

Eq. 1-16a+b
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The coefficients b which meet the least squares criterion can be calculated by setting the
partial derivatives of SSE with respect to each by (b, included) to zero. Thisis the well-

known procedure for finding extrema of functions from which derivatives can be obtained.

Thus, the minimum for SSE is defined by:

as —0ad & =0 Eq. 1-17a+b
dbo bo by by j by by b
which leads to
28 (Y - b, - & bx,)=0 Eq. 1-18
k=1 =1
and
28 (Y, - by - & bx,)x, =0 Eq. 1-19
k=1 =1

These relationships form a system of (i+1) = p equations. Each equation can be rearranged
with the y terms on the right hand side. We arrive at the so-called least squares normal
equations (1-20,21). There arei+1 = p of these, i for each of the coefficients b of the
independent variables x; (equations 1-21), and one more for the “constant” or “intercept”
by (equation 1-20). The total number of unknowns in our system of equations, p, is also

called the number of parameters in the regression model equation.

n
]

nb, +b,g Xy + D Xy +.. +b A X, = Y. Eq. 1-20
k=1

k=1 k=1 k=1

g 3 3 g g
bod Xy +hi@d Xy + b Xy Xy oo b A Xp Xy = A Xy Y
k=1 k=1 k=1 k=1 k=1

............. Eq. 1-21
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g g g ¢ , ¢
bod X +hi@d XyXy + D@ XaXy +oo + ba X =a XY«
k=1 k=1 k=1 k=1 k=1

Basically, we are dealing with a two-dimensional problem here. Looking at our set of
sample equations above, we have n equations with the p=(i + 1) unknown parametersin
each one from our model equation (dimensionsn ~ p). After transformation to the normal
equations we obtain a system of p equations with ptermsineachone(p ™ p). Thus, itis
not surprising that the most elegant and convenient way to solve the problem of finding
the set of regression coefficients b which gives aminimum for SSE entails matrix
algorithms. We are not going to go through this procedure in every gory detail. Other
books do that, and they are written by real mathematicians (see recommendations in the
Literature section of this book). Suffice it to say that the starting point of the calculations
is the matrix notation (1-22) for the system of sample equations (bold small letters or

words denote vectors, bold capital letters symbolize matrices!):

y = Xb + error Eq. 1-22
or
éy,u él Xin X e Xy l:é)ol:l éerror, u
& ¢ & U & a
U gl Xu X Xoi 2Dy 7 Zrror, -
€08 Eats 4 Eq. 1-23
&0 g.. X3il;§...3 g 3
@yng el an Xn2 Xni 0e iG é’arrorno

The n dependent variables or outputs becomethen ™ 1 vector y, the p parameters
(independent variables plus one constant or intercept) are represented by the product of
then” pmatrix X andthen ™ 1 vector b, and the n error terms of the n observations or

runs formthen ~ 1 vector error.

The solution of the least squares problem can be obtained through a series of matrix

transformation. We will give the final steps. The least squares criterion of SSE=0 leads to:

X'Xb = X'y Eq. 1-24
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Equation 1-24 is ssmply the matrix representation of the normal equations (1-20,21).
Finally, the vector of the estimated coefficients b is given by

b = (X'X)'X'y Eq. 1-25

X’ denotes the transpose of X, where the indices for the dimensionsn and p are
exchanged (rows become columns and vice versa). X isthe inverse matrix of X, which
means the matrix product XX becomes the unitary matrix E with diagonal €l ements of

value 1 and non-diagonal values of zero.

Consequently, finding the regression coefficients by which meet the least squares criterion
boils down to a series of matrix and vector transformations and multiplications. Thisisa
task which isideally suited for computers, and fortunately, we do not have to worry
anymore about having to perform this tedious work manually. However, one caveat of
equation (1-25) is the fact that the matrix product (X’X)™, a quadratic matrix with the
dimensionsp” p (again, p = number of independent variables plus the constant term or
number of parameters), has to be calculated. This matrix, however, sometimes cannot be
calculated if there is a high degree of collinearity between the columns of the matrix of the
independent variables X, i.e., if the regressors are not linearly independent. This can
happen, for instance, when performing Polynomia Regression, where the regressor
variables are different orders of one input and thus are strongly correlated. In computer
programs, this can lead to error messages such as “division by zero”. Thisisone of the

numerous problems caused by multicollinearity (see also Chapter 3.1.6).

Using matrix notation, the vector of the fitted or predicted responses, Y., can be
calculated by

Vo = X(X'X) X'y Eq. 1-26

The matrix X(X’X) X’ has the dimensionsn” n and is called the hat matrix. It plays an
important role in regression analysis, especially regarding model adequacy checking
(Chapters 3 and 5).
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It isimportant to realize that the regression coefficients b calculated by the least-squares
method are estimated parameters. According to the Gauss-Markov-Theorem, they are the
linear unbiased estimators with the least error variance compared to all other unbiased
estimators. This error variance can aso be estimated and depends on the Sum of Squared
Errors (SSE), introduced above, and the degrees of freedom of the regression model and

of the residual error, respectively.

Assuming a data set with n data points, the total number of degrees of freedom in Linear
Regression is (n-1). The number of degrees of freedom occupied by the regression model
isequal to the number of regression coefficients associated with regressors, i.e., the
number of coefficients minus the intercept or constant term by. In the equations above, we
used i to denote this number. The number of degrees of freedom left for the error
calculations is the total number minus the number occupied by the modd, i.e., (n-1)-i. One
can see that for the Linear Regression model with one constant term, there is another way
for defining the error degrees of freedom: since the total number of termsin the model
including the intercept isjust p =i +1, the error degrees of freedom (feror) Can be defined

as:

ferror = (N - p) = nUMber of data points - number of model terms (including intercept)

The Sum of Squared Errors (SSE) divided by the error degrees of freedom gives the so-
caled Mean Squared Error (MSE):

SSE
(n- p)

MSE = Eq. 1-27

The Mean Squared Error (MSE) is equal to the unbiased estimator of the error variance,
s This is amodel-dependent estimator of the error variance. Its value depends on the
regression model used in the least-squares calculations. The square root of the model-
dependent error variance M SE used as an estimator for the model-dependent “ standard
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deviation” and is called the Standard Error of the regression model. This should not be
confused with the Standard Errors for the individual regression coefficients or

observations as described in the following chapter.

1.1.5 Confidence Limits for Regression Coefficients and Observations

In linear regression, we assume that the error terms are uncorrelated random variables,
they do not depend on each other (if they depend on each other, we call this
autocorrelation, see Chapter 3.1.7.), and that they follow a normal distribution. Plotting
the error distribution should idedlly give a bell-shaped curve with amean of zero and a
standard deviation s. It follows from the model equation (1-1) that the responses also
have to be random variables. Due to the random error and lack of fit, there exists a
probability distribution for a given yi at each possible setting of the xy;,. Therefore, when
reporting results of regression analyses, the estimates of the expected errors and
confidence limits are essential. They determine the range where we can find the actual
response with a certain probability. Actually, the expected value yy ) IS the mean of a
distribution for a given setting or data point k.

The confidence limit or interval (Cl) depends on the confidence level a or the probability,
that the “actual” response can be found in the given confidence range. A t-distribution
with the (n-p) error degrees of freedom is used to estimate these confidence regions. In
most cases, the confidence intervals are calculated at the 95% probability level. A higher

probability leads to wider confidence ranges and vice versa.

Let us define the i regressors plus intercept for this setting as a row vector
Xk’ =[1,X1k,X2k,--,Xik]. The confidence interval Cl at 95% probability level around the
expected mean is defined by:

= 5, o)y MSEX, " (X" X) !X, Eq. 1-28

Yk (est)
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The expression under the square root is also referred to as Standard Error for Mean
Response. Note that both Standard Error and ClI depend on the location of the data point

in X space!

If we want to predict new responses based on settings which do not occur in our data, we

have to use awider confidence range to reflect the increased uncertainty:

= 2gs 1. oy MSE (1 X" (X" X) X0, ) Eq. 1-29

ynew( est)

In this case, the square root term is also called Standard Error for Prediction. Again, the
value for Cl in equation (1-29) depends on the settings for the x; of the new data point!
These confidence ranges will be discussed again in Chapter 5 in connection with the

prediction module of Essential Regression.

By the same token, we can define a confidence limit or confidence range around the
estimated regression coefficients by which depends on the confidence level or the
probability, that the “actual” regression parameter can be found in the given confidence

range. At the 95% level, the equation for the confidence limit of agiven b is:

cl,

1

= g, | MSE[(XX) ] Eq. 1-30

The term in square brackets denotes the jth diagonal element of the (X’ X)™ matrix we
used above in the calculations of the |least squares estimators (Equation 1-25). The square

root term is also called the Standard Error of the regression coefficient by.

1.1.6 Intercept-free Regression Models

In the beginning of this introduction, we defined equation (1-1) as the basic model
eguation for our derivation of the least-squares method. This equation contains a
coefficient by symbolizing a constant term. This constant is also called intercept because,

when using only one independent variable x, by givesthe value of y at x = 0, i.e., the point
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where agraph of y = by + b, X intercepts the y-axis. However, we can also define a model
equation with by set to zero by definition. We arrive at what is referred to as a no-
intercept model or intercept-free model. For the matrix equation (1-25) used to calculate
the regression coefficients, this means that by in the coefficient vector b is zero by
definition.

In situations where the dependent variable or the response can only be zero when dl the
independent variables are zero, intercept-free models appear appropriate. This occurs
most often when analyzing physical or chemical relationships. Without this background
information implying an intercept of zero, however, both intercept and no-intercept
models have to be evaluated carefully. Sometimes, a scatter diagram of the data seems to
indicate that the graph can be extended through the origin. However, if the available data
are remote from the origin, such an extrapolation can lead to erroneous conclusions. If
both an intercept and no-intercept model are possible, the Mean Squared Error (MSE) isa

good basis for comparison. The smaller M SE indicates the better model.

1.2 Application: Regress Menu, Input Dialogs of Essential Regression

1.2.1 Overview

The contents of the previous chapter give the theoretical background for the following
description of the Regress Menu and the Input Dialogs of Essential Regression (ER).
Most of the topics covered theoretically in the previous chapter will be practically applied
here and guide through the first steps of arriving at aregression model using ER. This
concept of presenting the underlying theory first followed by the practical application
within ER will be continued throughout this book. Admittedly, the resulting order of
introduction of the different theoretical aspects of Linear Regression is sometimesin
contrast to the didactic approach used in most textbooks on Linear Regression. However,
by following the logical sequence of the dialogs and menus of ER, we intend to facilitate
the use of ER, especialy for first time users, and simultaneously give a theoretical

background of Linear Regression.
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We assume the user has an Excel worksheet open with the data to be evaluated in tabular
form, i.e,, the cases or data points are arranged in rows, the variables in columns. We also
assume the top row contains header information for each column (variable names). The
cursor should highlight the leftmost cell in the header row of the table. We refer to this cell

as the pivot cell.

There are certain limitations to the variable and sheet names used. They should not contain
hyphens, dashes, plus and minus signs or smilar characters which could be misread for
mathematical expressions. These characters could cause errors which would lead to a

termination of the program.

After loading ER, an additional menu option, Regress, becomes available in the Main
Menu of MS Excel. When selecting either the Multiple Regression or Polynomial
Regression option, ER reads the header information of the data table from left to right and
displays the column headers as possible variables (regressors and responses) in the
corresponding list boxes of the Multiple or Polynomial Regression Input Dialogs. In these
dialogs, the user can select the desired independent variables (factors, regressors), the
dependent variable (response), and the type or the order of the regression model. For
Multiple Regression, ER offerslinear, quadratic, and cubic models, and second and third-
order models with and without interaction. For Polynomial Regression, the user can
choose from first to ninth-order polynomials in one variable. In addition, the input dialogs
allow the user to transform the independent variables (regressors) either by centering or
standardization (scaling). Furthermore, the user can choose between an intercept or non-
intercept model. Also, the probability level of the confidence intervals for the regression

coefficients can be adjusted here.

1.2.2 Regress Menu
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ThisMenu is accessible in the MS Excel Main Menu once ER is loaded as an Add-in.

Wiew  |nzert  Fo
tultiple Begreszion
Palynomial Regrezzion
Analyze Design

Simulate [1ata
Relink Buttons
Duplicate Regreszion

Help

IInload
Ahaout

Figure 1-1: Regress Menu

Multiple Regression
This option opens the Multiple Regression Input dialog box. Essential Regression

performs a Multiple Linear Regression based on the least squares method.

Polynomial Regression

This option opens the Polynomial Regression Input dialog box. Essential Regression
performs a Polynomia Regression which uses alinear or higher order polynomia of one
variable (predictor, regressor, independent variable, x) to describe the response

(dependent variable, y).

Analyze Design and Simulate Data

These two menu options are used in connection with Essential Experimental Design
(EED) described in detail in Chapter 6. To use the Analyze Design option, a worksheet
created in EED hasto be the starting point. However, the Simulate Data menu item can
also be used in Essential Regression (ER) to create a simulated data set based on given
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input variables and predefined regression coefficients (see Chapter 6 and the Quick Guide

for more details).

Relink Buttons

This menu option relinks the buttons of the XLS output sheet created with Essential
Regression to the Essential Regression Add-In. This is sometimes necessary if the
worksheet buttons don’t work despite the fact that the Add-1n isloaded in memory. This
will happen if ER is moved from the directory it was in when the worksheet was created.
See Chapter 5 for more details about the XL S output sheet.

Duplicate Regression

Activating this menu option generates copies of the current XL S output worksheet (see
Chapter 5) generated by Essential Regression. A XLS output sheet must be the active
sheet.
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Help

Opens the Essential Regression on-line help.

Unload

Removes the Regress Menu from the Excel Main Menu and unloads the Essentia
Regression Add-In file. If the Add-In isloaded, but the Regress menu is not visible, it can
be reactivated by using the { Ctr[+M} key combination.

About
Gives information about the current version of Essential Regression and the systemit is
installed on.

1.2.3 Multiple and Polynomial Regression Input Dialog Boxes

The input dialog boxes appear when the user activates either the Multiple Regression or

Polynomial Regression option in the Regress menu

Multiple Begreszion Input E |

Rezponze [ Select Factors

IY'] j %1 %1 d
e ue

Type of Regression _
'

IFuII [uadratic j 2

= Tranzfarm J J

INu:une j

¥ Fegress Intercept?

Coefficients Confidence |ntervalz

2 A r :
’7 & J J J E xit Help rrMents:

Figure 1-2: Multiple Regression Input Dialog
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Polynomial Regreszion Input

Fredictar [+] # Tranzform
i:-:1 __:J INnne
Rezponze [T]

['1 =l

Type of Rearezsion

FENETEIT - | Regiess Intercept?

By 4 ] Exit

Help |
| »xMexts I

|'E|:|effi|:ients Confidence Intervals

Figure 1-3: Polynomial Regression Input Dialog

Predictor(X)

(Polynomial Regression)

Choose one predictor or regressor variable x for a polynomia mode.

Select Factors

(Multiple Regression)

Choose independent factors or variables (regressors) x; for the regression model. Up to

nine independent factors can be selected.

Type of Regression

(Polynomial Regression)

Specify the order of the regression model. ER allows the user to specify linear (1% order

regression, "simple" linear regression with one predictor), quadratic, cubic etc., up to to

9th order polynomials of the regressor or independent variable Xx.
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Type of Regression

(Multiple Regression)

Specify the order and type of the regression model. "Full Quadratic" and "Full Cubic"
contain al higher order terms including interactions. Subsets of these models are
"Interaction” (no quadratic terms, but linear-linear interactions), "Squared Interaction™ (no
cubic terms, but squared-linear interactions), "2nd order, no interaction” (only linear and
guadratic terms), and "3rd order, no interaction” (linear, quadratic, and cubic terms

without interactions).

Response(Y)
Choose the response or dependent variable Y

Regress Intercept?
Checked
A constant parameter which is independent of the settings for the x; isused in the
regression model. A so-called intercept-model is used as described in the previous

chapter.

Unchecked
Specifies anon-intercept regression model or a“regression through the origin”. There
IS no constant parameter in the regression model. See remarks at the end of the

previous chapter regarding the utility of non-intercept-models.
Centering or standardizing the response together with al the independent variables (see X

Transform below) creates a non-intercept model by definition, and ER will produce a

constant term of zero even when the Regress Intercept box is checked.
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X Transform
Thislist box gives severa options for transformations of the predictor (regressor)
variable(s) x;. Transformations of the x; can be performed both in the Multiple and

Polynomial Regression mode.

None

No transformation; regression model will be based on raw data.

Center All Terms

Centers both linear and higher order terms of the predictor (regressor) variable(s) x;
after calculating the higher order terms from the linear terms. Centering is done by
dividing the difference between the maximum and the average of a given x; by the

average.

Standardize All Terms

Standardizes both linear and higher order terms of the predictor (regressor) variable(s)
x; after calculating the higher order terms from the linear terms. Standardization is done
by dividing the difference between the maximum and the average of agiven x; by the
standard deviation. This corresponds to the unit normal scaling method described in
the previous chapter. The resulting transformed variables have a mean of zero and a
standard deviation of 1.

Center Linear Terms
Centers only linear terms of the predictor (regressor) variable(s) x; and calculates the
higher order terms from the centered linear terms. Centering is done by dividing the

difference between the maximum and the average of a given x; by the average.
Standardize Linear Terms
Standardizes only linear terms of the predictor (regressor) variable(s) x; and calculates

the higher order terms from the standardized linear terms. Standardization is done by
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dividing the difference between the maximum and the average of a given x; by the
standard deviation. This corresponds to the unit normal scaling method described in
the previous chapter. The resulting transformed variables have a mean of zero and a
standard deviation of 1.

It isimportant to emphasize that only the regressor or independent variables x; are
transformed after selecting one of the transformation options in the X Transform option!
The response can be independently transformed using the Y Trans option which is part of
the Main Dialog discussed in the next chapter. Centering or standardizing the response
together with the al independent variables using the All Terms options creates a non-
intercept model, and ER will produce a constant term of zero even when the Regress

Intercept box is checked.

As discussed in the previous section of this chapter, centering or scaling the variables can
be helpful when higher-order terms or polynomials are used in the regression model or if
the variables differ significantly in magnitude. These conditions can lead to ill-
conditioning of the matrix of the independent variables. This means that the matrix
inversion used for the calculation of the regression coefficients can become inaccurate and

significant error is introduced in the estimation of the coefficients.

Coefficients Confidence Intervals

Specifies the probability or significance level of the confidence intervals of regression
coefficients and predicted responses. By default, it is set to a probability level of 95%.
Increasing this number leads to wider confidence limits and vice versa. Other than that, it

has no effect on the regression model.

Next

Opens the Polynomial or Multiple Regression Main Dialog
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2. Tests for Significance of the Regression Model and

Parameters

2.1 Theoretical Background

21.1 Introduction into Hypothesis Testing

In the previous chapter, we have shown that Linear Regression allows us to estimate a
response variable depending on the values or settings of one or more independent
variables. By applying the so-called |east-squares technique, we can fit a model equation
containing one or more independent variables by minimizing the residual error measured
by the sum of sguared deviations between the actual and the estimated responses. We do
so by calculating estimates for the regression coefficients, i.e., the coefficients of the
model variables including the intercept or constant term. However, this does not tell usif
the calculated coefficients or the model equation actually have a statistical significance. In
other words, does the linear relationship we defined when setting up the model equation
have any meaning when compared to the error in the data? Does an individual regression
coefficient for a given variable have any significance or could we drop it from the model
without sacrificing the quality of the result? These questions are behind the tests for

significance of the regression model and the individual regression coefficients.

In these situations, statisticians tend to define so-called null hypotheses. In order to test
the significance of the model, they assume the worst case scenario by saying: “ The null
hypothesisistrueif thereis no linear relationship between any of the independent

variables’. Thisis equivalent to the equations:

Ho:b1:b2:....bi:O Eq2-1

Hi:b;* O for at least one j Eq. 2-2

with Ho denoting the null hypothesis, H; being the rejection of the null hypothesis, and

b,...b; representing the intercept and the regression coefficients of the i independent



variablesin our model equation (1-1). If Hy is rejected, there is at least one independent
variable significantly contributing to the linear model, and we can conclude that there

exists a functional relationship between the response and at least one of the variables.

Similarly, the hypotheses for the individual coefficients by can be defined:

Ho:b;= 0 Eq. 2-3

Hyb1 0 Eq. 2-4

If Ho is rejected, the respective coefficient significantly contributes to the model. If Ho
cannot be rejected, the corresponding variable can be eliminated from the model

equation.

2.1.2 Test for Significance of the Regression Model

The null hypothesis for the regresson model (eg. 2-1a) is smply tested by comparing the
effect or variability caused by the regression model to the overall error. This comparison is
based on the so-called Total Sum of Squares (S,y), the Regression Sum of Squares (SSR),

and the Sum of Squared Errors or Error Sum of Squares (SSE).

In Linear Regression, we define the total variability in the n observations as the sum of the
squared differences between athe responses y; (k=1...n) and the average of all responses,
"y. Thisisaso called the Total Sum of Squares, Sy.

& o

a Vvt
_ 3 9
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By the same token, the Regression Sum of Squares, SSR, which gives the variability in the
response y explained by the model equation, is defined the sum of the squared differences
between a the estimated responses yis) (k=1...n) and the average of al responses, " y:
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8a Yk

SSR = é (yk(est) - y)’ = é yk(est) - n Eq. 2-6
k=1 k=1

We dready defined the so-called Error Sum of Squares, SSE, in the previous chapter. It is
the sum of the squared residuals, or, in other words, the sum of the squared differences
between the observed responses, yi, and the predicted or estimated responses based on the
model, Yi(es)-

SSE = @ (Yi - Vi) Eq. 2-7

k=1

The total variability in the observations is the sum of the variability or effect caused by the
regression model, SSR and the error contribution. So, instead of using equation (2-6), the
effect or variability caused by the regression model can be found by calculating the
difference between the total variability or Total Sum of Squares and the Residual or Error
Sum of Squares:

Syy=SSR + SSE Eq. 2-8

SSR =S,,- SSE Eq. 2-9

Associated with S, the Total Sum of Squares, are n-1 degrees of freedom, with n being
the number of data pointsin the regression. One degree of freedom has been “lost” or

used up by the congtraint that the sum of all the differences (y«-'y) is zero.

The number of degrees of freedom for the model, associated with the Regression Sum of
Squares, SSR, equals the number of coefficients b, without the constant term, bo. Thisis
equal to the number i of independent variables, or model terms without the constant, if

present.

The residua or error degrees of freedom are found by subtracting the degrees of freedom
for the model from the degrees of freedom for the Total Sum of Squares. Thisis
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equivalent to the difference between the number of data points, n, and the number of terms

in the model including the constant, p.

fs, =n-1
fSSR-ZI Eq. 2-10a-d
p=i1+1

fee =(N-D-i=n-(i+D)=n-p
The test for the significance of the regression modd is performed as an analysis-of-
variance procedure by calculating the ratio between the Regression Sum of Squares
(SSR) and the Error Sum of Squares (SSE) and comparing the result to the F-statistic
with the appropriate degrees of freedom at a given significance level.

_SSR/fe _  SSR/i  _ MSR
° SSE/f,. SSE/(n-1-i) MSE

Eq. 2-11

From the previous chapter, we already know that the division of SSE by the error degrees
of freedom gives the Mean Squared Error, MSE. By the same token, the term SSR/i is
called the Regression Mean Square, MSR.

The null hypothesis Hy is rejected if F, is greater than the corresponding critical value Fgit
of the F-distribution for a given significance level with i and (n-1-i) degrees of freedom. In
other words, for asignificance level a, the hypothesis that the regression model is not
significant can be rejected at the a-level if Fo>Fqi= Fain.1i. NoOte that the significance
level a stands for the probability that the null hypothesisis true, i.e., the model is not
significant. Usualy, significance levels a of 0.10, 0.05, and 0.01 are used to determine
critical values Ft., where decreasing significance levels indicate a higher confidence for
the model. The values F;; for the F distribution increase with decreasing significance level
a and increasing degrees of freedom fssr for the regression model, and they decrease with
increasing degrees of freedom fsse for the error contribution. For a given model, the larger
the value of MSR/MSE, the lower the significance level a leading to critical values for Fyit
which are smaller than Fo, and the higher the confidence level for the significance of the
model, i.e. argjection of Ho. On the other hand, increasing the number of model terms for

agiven data set, i.e., increasing fssg and decreasing fssg, can lead to a decrease of MSR
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and an increase of MSE up to a point where the F, becomes smaller than F;; and the
model is no longer significant. If this occurs at significance levels a of higher than 0.1, the

model is considered to be no longer significant.

An anaysis-of-variance- or ANOVA-table such as Table 2-1 is commonly used to
summarize the test for significance of the model which we just described. There are
variations in the layout of this table. In computer programs, usualy the significance level a
is calculated and given in addition to the corresponding vaue of Fo=MSR/MSE, so we do
not have to look up the values for Fg; in atable anymore. For example, if the computed
value for a is.076, then the model is significant at the 0.1 level, but not significant at the
0.05 level. Again, smaller values for the computed significance levels (also called error

probabilities) indicate more significant, i.e., “better” models!

Table 2-1: ANOVA table for a model with i regressor variables and n observations.

Source of Sum of Degrees  Mean Square Fy Significance a
Variation Squares  of or Error

Freedom Probability P
Regression SSR i MSR =SSR/i MSR/MSE = P(Ho:FofEFgi)
Model
Residual (Error) | SSE n-1-i MSE

= SSE/(n-1-i)

Total Sy n-1
2.1.3 Test of Significance on Individual Regression Coefficients

The significance test on the regression model tells usif at least one of the regression
coefficients is different from zero. We have to perform another test to be able to assess
the significance of the individual coefficients. This test forms the basis for model
optimization by adding or deleting coefficients (see Backward Elimination, Forward

Selection, and Autofitting in Chapter 4). A model with many coefficientsis not necessarily
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the best, and a model with only a few coefficients might improve dramatically by adding
another, but we have to know which coefficient actually plays a significant role in the
model.

The underlying null hypothesis was described above. A t-test statistic is used to test this
hypothesis:

bi
f = Eq. 2-12

0~ *
JMSE*C i
C; isthe diagonal element pertaining to the coefficient by of the matrix (X’X)™ which we
introduced in the description of the least squares method in chapter 1 (Eg. 1-24). Note
that the square root term equals the so-called standard error of the individua regression
coefficient b.

Similar to the F-test used for checking the model significance, we compare the calculated
to to the critical t-value ti; for agiven significance level a and the error degrees of
freedom, n-1-i. Note that there can be differences in the tables of the t-distribution given
in the literature depending on the definition of a. In most tables, the t-distribution is given
for the so-called two-sided or two-tailed significance level. In this casg, the critical value
we look for ist,, na.i.. This means, the error probability or significance on each side of the
two-tailed t-distribution s defined as a/2. For a one-sided t-test, the fraction under the
positive or negative tail of the distribution is defined asa. If the table lists the one-sided a
levels, we have to look for taj, n1-i- The built-in t-distribution of MS Excel® uses the first
notation. For instance, tos1 can be calculated by entering the worksheet function
“=TINV(.05,1)” and resultsin the value 12.706. Certain books, however, list one-sided
significance levels, wheretgs; islisted as 6.314, and t o251 gives 12.706.

If the calculated value for ty is larger than ti;, we regject the null hypothesis at the given
significance level. For instance, with a=0.05, we would say that there is only a 5% error

probability that the corresponding coefficient is not significant. Note that this significance
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is based on the presence of all the other regressor variables in the model. It might change

dramatically with a different set of regressor variables.

The results of the significance tests on the coefficients are usualy listed in atable such as
Table 2-2. In the P-value column, “tinv” denotes the probability or a-level for the
calculated to-value. Cl stands for confidence interval. The expression for the confidence
intervals of the coefficients by was already introduced in Chapter 1.1.5.

Table 2-2: Parameter Table for a model with i regressor variables (or p = i+1

parameters) and n observations.

Variable | Coefficients| Standard t Statistic P-value or Lower Upper
Error (to) a for ty Cl Cl
Intercept bo
X; b MSE[xX) ] b; =tinv b by
’MSE[(X' X)—l]jj (a,(n-1-1i)) - ra,n- . Msa(xx)l | s NE[(XX)llu

214 Test for Lack of Fit

If replicate measurements are present, i.e., responses based on the same settings for the
independent variables, atest can be performed which gives the significance of the replicate
error in comparison to the model dependent error. In other words, the test splits the
Residual or Error Sum of Squares, SSE, into a contribution from the pure error, whichis
based on the replicate measurements, and a fraction which is due to the lack of fit based
on the model performance. Let us assume we have m data points based on different
settings for the independent variables, and ry replicates for a given observation yx. The

total number of data pointsis then:

>
1
-
SE]
Lo
=
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The so-called Pure Error Sum of Squares, SSPE, is obtained from the summation of the
squared differences between the r replicate measurements and their average for each

setting and then summing over al the m different settings.

(ykj - yk)z Eqg. 2-13

Qo
moq

SSPE =

7\‘
1

1j=1

SSPE is associated with (n-m) degrees of freedom. The Sum of Squares for Lack of Fit
can be obtained by subtracting SSPE from SSE. It is associated with m-2 degrees of
freedom. Similar to the F-test for significance of the model, the test statistic for lack of fit
isgiven by

£ _ SSLOF/(m- 2) _ MSLOF
® SSPE/(n-m)  MSPE

Eq. 2-14

If Fyislarger than the critical value F.; for a given significance level a with m-2 and n-m
degrees of freedom, the lack of fit error is significant, i.e., there might be contributionsin
the regressor-response relationship not accounted for by the model. When performed on a

linear (first order) model, thistest indicates curvature if Fy is significant.

2.2 Application: Multiple and Polynomial Regression Main Dialog (I):
Model Term Selection, ANOVA, and Coefficients Table

2.2.1 Overview

In chapter 1.2, we described how to select Polynomial vs. Multiple Regression, how to
pick input and response variables, how to define the order of the regression model (linear,
guadratic etc.) and, finally, how to specify amodel with or without intercept. After
completing these steps and clicking Next in the Polynomial or Multiple Regression Input
Didogs, ER will bring up the Main Dialog (see Figure 2-1).
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Figure 2-1: ER Main Dialog with Model Term Selection, ANOVA, and Coefficients
Table

The Main Diaog is divided into severa sections. In this chapter, we will describe the
Input area at the top and the ANOV A and Regression Coefficient Tables, which are part
of the Output Area in the bottom half of the dialog box. The remaining sections deal with
“Model Adequacy Checking”, including Outlier Analysis, and automatic fitting by using
forward selection and backward elimination. These sections will be discussed later in this
book when we talk about how to determine how to arrive at the best possible regression
model and how to assess its reliability. For now, let’s assume that we have picked our
variables and just want to know what the model parameters ook like and if the model is
significant. Like in Chapter 1.2., we will go through the features of the Main Dialog in the
chronological order most likely employed by the user.
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2.2.2 Input Area of Main Dialog

Select Term Window

This window contains the terms which can be derived from the independent variables
picked in the Input dialog (i.e., linear, higher order, and interaction terms, according to the
order of regression selected by Type of Regression in the Input Dialog Box). By selecting
terms and clicking the ">" button, terms can be selected for the regression model and will
appear in the Initial Model window. By clicking the ">" button without selection, terms
are transferred into the Initial Model window in order of their appearance in the Select
Term window. Note that any subset of the model terms which are part of the full model
can be selected.

Initial Model Window

Thiswindow contains all the terms which were selected from the Select Term window by
using the ">" button. Terms can be eliminated from the model by selecting them in the
Initial Model window and using the "<" button. Clicking this button without any terms

selected removes the terms from the window in order of their appearance.

Regress Button

Starts the Linear Regression using the model termsin the Initial Model window.
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2.2.3 Output Area of Main Dialog (I): ANOVA Table and Regression

Coefficients Table

ANOVA

Output window for the Analysis of Variance table. This table gives the Regression Sum of
Squares (SS) for the regression model (SSR), the Residual Sum of Squaresfor the error
contribution (SSE), and the Total Sum of Squares for the overall variability. In addition, a
percent contribution for the model and the error is calculated. The Mean Square for the
regression model (MSR) and error (M SE, see Chapter 1.1 and 2.1 for a definition of these
terms) are calculated by dividing the Sum of Squares by the respective degrees of freedom
for each term. The MSE is used to calculate the F-statistic (= MSR/MSE). The resulting
model significance is shown in the ANOVA table (F Signif). As described in the previous
chapter 2.1., low values of F Signif indicate a high model significance. A value of .05
indicates a significant model at the 95% significance level. A lack-of-fit test (LOF test) is
performed when replicates are present in the data set and the resulting Pure Error (SSPE)
and Lack-of-Fit (SSLOF) contributions to the Regression Sum of Squares (SSR) as well
asaF datistic for the significance of the LOF are shown in this case. Once aregression is
performed, the current model equation is shown below the ANOVA table.

Regression Coefficients Window

Thisisthe window at the bottom of the output area of the Main Dialog. It shows the
terms (variables) used in the model and their regression coefficients with standard errors,
t-statistic, and significance level for each coefficient. Another column shows the variance
inflation factors (VIFs). We are going to talk about these in detail in Chapter 3. Each list
box showing a specific parameter list can be scrolled independently. However, when a
specific row is highlighted in alist box, the corresponding rows in the remaining list boxes
will be highlighted automatically. This setup allows for more flexibility when dealing with

parameter lists which are longer than the window area.



3. Regression Diagnostics and Model Adequacy Checking

3.1 Theoretical Background

3.1.1 Overview

The previous Chapter described how we can determine if aregression model and the
individua regression coefficients are significant at the level we deem appropriate (90% or
.1, 95% or .05 etc.). However, we still have to figure out if this model actually describes
our data adequately. How good is the “fit” of the predicted data compared to the “redl
data’ ? Are there differences between fitted and experimental data which are larger or
smaller than expected? How “good” are the “real data’, anyway?. Are there data points
which we have to discard because they might be erroneous? Are there data points which
might have an unusualy strong influence on the regression results ? These questions are
behind what is commonly called Model Adequacy Checking.

3.1.2 Coefficients of Multiple Determination for Intercept Models

Everybody who has ever performed a simple Linear Regression, maybe only as a straight
line fit, knows that there are parameters called R (correlation coefficient) or R* which
somehow describe the quality of the fit. Most people consider these parameters as most
important in assessing the quality of a regression model. This chapter will show that we
have to be very careful in relying exclusively on these parameters when evaluating a

regression model.

R?, the coefficient of determination in Simple Linear Regression is called coefficient of
multiple determination in Multiple Linear Regression. It is defined by the ratio of the
Regression Sum of Squares (SSR) over the Total Sum of Squares (Syy) or, which is
equivalent, by one minus the ratio of the Error Sum of Squares (SSE) over the Total Sum

of Squares (S,y):
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1- Eq. 3-1

Eq. 3-1 explains why R? can only range between 0 and 1. One can think of R? as the
fraction of total variability in the data (S,y) explained by the regression model (SSR).
Sometimes (R**100) is called the percentage of total variability explained by the model. R?
can aso be described as an indicator of the proportion of variability around the average of
the observed responses. However a R? value close to unity does not necessarily guarantee
agood model. On has to keep in mind that adding a regressor variable always increases R*
due to the increase in SSR. For instance, when performing a curve fit of scientific data
using a polynomia moddl, it is always possible to increase the R? by adding higher order
terms. Ultimately, this leads to a very complicated fitted curve which basically just
connects the dots in our graph. This does not mean that this “model” has any real
significance. Such amodel with a very impressive R? close to 1 might perform very poorly

in predicting new data. Thisiswhat is called an overfitted model.

The square root of R? isthe multiple correlation coefficient between the response, y, and
the regressor variables in the model. In linear curve fitting, the correlation coefficient R
between between y and x can range between -1 and +1 corresponding to a negative or
positive slope of x versusy. In Multiple Linear Regression, R equals the correlation
coefficient between the observed responses and the predicted responses and ranges from 0
to 1. To visualize the “quality of the fit” of aregression model, sometimes a plot of
observed vs. predicted responses is used with afitted straight line giving the correlation
coefficient R or R%. Keep in mind, however, that this does not give any information about

the adequacy and predictive power of a model.

By taking into account the degrees of freedom in the model, we can define a so-called
adjusted coefficient of determination or Rxjused. Whereas the ordinary R? dways
increases or at least stays constant when adding new model terms, Rxused Can actually
decrease, thus giving an indication if anew coefficient actually improves the model or

might lead to overfitting:
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Rfd,- _ 1. MSE _1. SSE/(n- p) _1. (n-12 (1- R?) Eq. 3-2
S, /(n-1) S, /(n-1) (n- p)
As defined in Chapters 1 and 2, n denotes the number of data points, p = k+1 stands for
the number of parameters in the model including the intercept (k = number of regressors).
The difference (n-p) decreases when a new regressor is added. This means that, for the
new model, SSE has to decrease correspondingly for M SE to become smaller. Only in this
case, R%; increases. When evaluating a regression model, R? and R%; should be

compared. If they differ substantially, the model could be overfitted.

3.1.3 Coefficients of Multiple Determination for No-Intercept Models

Generally, R? should not be used to compare intercept and no-intercept models. For a
model without an intercept, R? as defined in 3.1.2 describes the proportion of variability
around the origin which can be explained by the regression model. This value can be larger
in an intercept-free model than in amodel with intercept even though the Mean Square for
the Error (MSE) is smaller for the intercept model. Suffice it to say that the MSE
(sometimes called RMS Error) is the more appropriate parameter for a comparison

between intercept and no-intercept regression models.

3.1.4 Residuals, Standardized Residuals and Outliers

In Linear Regression, the difference between an observed response for a given data point,
Yk, and the predicted response, yies), IS called residual. We have already shown in the
previous chapters that the sum of the squared errors, which in fact is the sum of the
squared residuals, divided by the error degrees of freedom gives M SE, the Mean Square
Error for the regression model. But the significance of the residuals does not only liein
this calculation. After calculating a model, a thorough analysis of the residuals is very
important to evaluate the adequacy of the regression. The most commonly used methods

inresidud analysis are:

1. Normal Probability Plots of the Residuals.
2. Plots of the Residuals vs. the Predicted Responses.
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3. Outlier Analysis using threshold or cut off values.

From Chapter 1, we know that one of the assumptions of Linear Regression is that the
errors or residuals are normally distributed. This can be checked by plotting the residuas
in a so-called normal probability plot. This can be done manually with normal probability
paper by plotting the individual resduase; ...ec, ranked in increasing order, against the
cumulative probability P = (k-1/2)/n. In a computer program such as ER, the ranked
residuals are plotted against the expected normal value or rankit, which is equal to the
inverse of the normal cumulative distribution for a given cumulative probability Px. In such
aplot, the points should form a straight line if the residuals are perfectly normally
distributed. In redlity, the plot is usualy dlightly s-shaped, which can be tolerated if the
deviation from linearity is not too bad. A pronounced s-shape, however, indicates a

distribution with heavy “tails’, i.e. the residuals should be inspected for outliers.

In addition to inspecting the normal probability plots of residuals, it is helpful to plot the
residual s versus the predicted responses. If the residuals are not correlated with the value
of the predicted response, than this plot should look like a horizontal band on both sides of
the expected average for the residuals, zero. If the pattern looks dramatically different, it
indicates that the error variance is not constant and depends on the response. Usually,
transformations in the regressors or the response are employed to correct this model
inadequacy. The shape of the residual vs. predicted response plot can indicate which
transformation of the response y could improve the model. For example, if the variance of
the residuals increases proportionally with the estimated responses, the plot looks like a
“funnel” becoming wider at higher values of the estimated response. In this case a

transformation of y to the square root Oy could improve the mode!.

When performing residual analysis, it is sometimes convenient to inspect the standardized

residuals rather than the raw residuals. Standardized residuals are obtained by dividing the
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residuals by their “ standard deviation”, or the square root of MSE, aso called the

standard error of the regression (see aso Chapter 1).

e
d, = X Eq. 3-3
“ JMSE g

This scales the residuals in units of the standard error, which can be used to define

threshold values for outliers, i.e., residuals which are so large that they indicate that either
the model or the response for the respective data point is erroneous. A cut off value of 3

standard errors is commonly used to distinguish outliers among standardized residuals.

For smaller data sets, so-called studentized residuals are more appropriate for residual
analysis. Studentized residuals are obtained by dividing the residuals by their exact
standard error, rather than the averaged standard error asin Eq. 3-3. The k™ diagonal
element of the hat matrix (see Chapter 1), hy , wherei denotes the k™ data point, can be
used to calculate the studentized residuals:

r = & Eq. 3-4

© JMSE(1- h,)

Since variances of residuas of remote data points tend to be smaller, the studentized

residual of adata point which is outside the bulk of the data tends to become larger.
Remote data points sometimes can affect the fit significantly, especialy in small data sets.
They become influential points. Hence, besides indicating outliers similar to the

standardized residuals, studentized residuals help detect these influential points.

Influential points can generally be defined as cases which affect the model coefficients
dramatically. Therefore, it isinteresting to perform the regression without a given data
point and determine, if the new model with n-1 casesis able to predict the withheld
observation. Thisideais the basis for the calculation of the prediction error sum of
squares (PRESS) and the PRESS residuals . PRESS residuals (ey)), sometimes called
deleted residuals, are defined by
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&,

€y =——— Eq. 3-5
“(1- hy)

Again, hy denotes the k™ diagona element of the hat matrix. Residuals from data points
with large values for hy will have large PRESS residuas and will be influential. If, for a
data point, the difference between the raw residual and the pressresidual islarge, the
underlying model with this data point will exhibit a good fit, but the model without this
point will predict this response poorly.

Based on the PRESS residuals defined above, another type of residual is sometimes used
to detect outliers and influential points. It is called R student or externally studentized
residual. It is calculated by scaling the residual according to the variance Sy* which is
obtained when fitting the data without the respective data point (that iswhy it is called
externally studentized):

_(n- p)MSE - €7 /(1- hy)
Sto = A Eq. 3-6

PR S— Eq. 3-7

\/S(zk)(l' hkk)
R student and studentized residuals will be equivalent if Sy> and MSE are similar in value.
With influentia points, however, these two variances will differ dramatically, and R

student will become more sensitive in these cases.

Potentially influential points can be detected by inspecting the value of the respective hat
matrix diagona eement, h. This value depends on the location of the respective data
point in the space defined by the regressor variables. A high value of hy indicates a
potentially influential, remote location in x-space. A cutoff value of 2p/n (p = number of
parameters in the model, n = number of data points) can be used to detect potentially

influential or leverage points.
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Another statistic measures the squared distance between the estimated response for a
given data point based on al data points and the response obtained after deleting the
respective case. It is called Cook’s Distance and defined by

2
I’k h kk

k. Eg. 3-8
p (1- hy)

D, =

Since Dy contains the product of the squared studentized residual and the term hy/(1-hy),
it is affected by thefit of the model and the distance of the data point from the rest of the

data. Points for which Dy >1 are usually considered influential.

The parameter DFBETAS can be used to determine the influence of a data point on the
individua regression coefficients of the model. Consequently, as many DFBETAS as there

are coefficients in the model have to be calculated for each case .
tk

rjk
\/rjlrj (1- hkk)

The vector r’j isthe ™ row of the p’ n matrix R which is derived from the X matrix of the

DFBETAS,, = Eq. 3-9

regressors:
R = (X'X)'X" Eq. 3-10

Asin Chapter 1, theindex j denotes the coefficient, k stands for the k™ datapoint. For the
constant term, j=0. A cutoff value of 2Q(n) can be used to determine observations which

areinfluential for a given coefficient.

Another statistic, called DFFITS, has been defined to detect the influence of an
observation on the fitted or predicted response:

.12
DFFITS, =& M O ¢ Eq. 3-11
8(1' hy)@

A commonly used cutoff value is 2Q(p/n). Points with larger DFFITS have a considerable
effect on the fitted values.
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Finally, thereis aterm which is used to describe the influence of an observation on the
precision of the observation. It is called COVRATIO and defined by:

COVRATIO, =25 $&@ 1 &
““§msE &1 h, 0

Eq. 3-12

A high leverage data point will lead to a high value for COVRATIO, unless this point is an
outlier. If COVRATIO for an observation yy is greater than 1, the data point will improve
the precision of the model, if COVRATIO is smaller than 1, the inclusion of this data point

led to a decrease of precision.

3.15 R? for Prediction, Precision Index and Coefficient of Variation

In the previous chapter, we defined the PRESS residual. The sum of the squared PRESS

residualsisthe Prediction Error Sum of Squares or PRESS:

.2
PRESS = § ¢%, =4 ge S 2 Eq. 3-13
k k 1- kk 9
PRESS is calculated from residuals which are based on a regression model with one data

point removed. Thus, it can be used to calculate an approximate R?, which indicates the
predictive power of the model. Analogous to R?, the R? for Prediction is defined by:

Rz —q. PRESS
prediction
SW

Eq. 3-14

So, R?, adjusted R?, and R? for Prediction together are very convenient to get a quick
impression of the overal fit of the model and the predictive power based on one data point
removed. In agood model, these three parameters should not be too different from each
other. However, for small data sets, it is very likely that every data point isinfluential. In
these cases, a high value for R? for prediction cannot be expected. This reflects the fact

that robust model equations are not very likely based on only afew data points. This does
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not mean the calculated model is not adequate for the data, but it highlights that predictive

models need a more extensive data base to predict with a reasonable statistical confidence.

The Pure Error Sum of Squares (SSPE) we described earlier in connection with the lack
of fit test can be considered an estimate for the model independent error variance. This
makes it possible to compute an expression for the potential predictive performance of the
regression model by comparing the range of the fitted responses to their average standard
error. In ER, we defined a precision index obtained by calculating the ratio between the
range of fitted or predicted responses and the average standard error derived from SSPE:

Precision Index = Y=t~ Yestmin Eq. 3-15
pSSPE

n

The larger the precision index the more satisfactory the underlying model can be expected
to perform when predicting new values. A low precision index close to 1 indicates that the
predicted variablity in the responsesis only of the order of magnitude of the replicate

measurement error.

Finally, the unexplained variability in the data, given by the standard error of regression or
the square root of M SE can be compared to the average response. Thisratio times 100 is
called coefficient of variation (C.V.).

cv.=YME 100 Eq. 3-16

y

Clearly, asmal value for C.V. isobtained if thefit isgood, i.e.,, MSE is small.

3.1.6 Tests for Multicollinearity, Variance Inflation Factors

We mentioned in Chapter 1 that, idedlly, the independent variables in a regression model
are orthogonal, i.e., there exists no linear relationship among them. In real life thisis not
easy to accomplish. Sometimes there are “hidden” relationships between regressor

variables. In the case of polynomial models and higher order regression models they are
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obvious. Linear or near linear relationships between regressor variables can cause a

problem called multicollinearity.

Multicollinearity can have severe effects on the estimation of the least-squares regression
coefficients. The estimates can become unstable due to an increase in the variances of the

coefficients, and the model can become inadequate.

A simple test for multicollinearity is the inspection of the XX matrix of the regressors in
correlation form. When applying unit length scaling to the regressors (see equation 1-7),
the XX matrix shows main diagonals of 1 and off-diagonals r;; equal to the correlation
between the regressors x; and x; (one of the add-ins which come with MS Excel allows
the user to create this correlation matrix of the regressors). If the regressors are linearly
independent, the correlation between the regressors should be close to zero. The
determinant of the correlation matrix can assume values from O to 1. If the valueis 1, than
the regressors are perfectly orthogonal, if the value is O, there exists an exact linear
relationship among them. In addition to the correlation matrix, the value of the

determinant is given in ER as a “correlation parameter”.

Theinverse of the X’X matrix in correlation form,[X’X] ™", offers another possibility to
check for multicollinearity. The diagona elements of this matrix give an indication for the
combined effect of the dependencies among the regressors on the variance of the given
regression coefficient. They are called variance inflation factors (VIFs). Large VIFs (>10)
indicate that the estimate for the respective coefficient could be severely affected by linear

dependencies of the regressor.

3.1.7 Autocorrelation

In Linear Regression, we assume that the errors are uncorrelated with respect to the time
sequence of the corresponding experiments or data points. Well-defined time intervals for
experiments are used for so-called time-series data. Uncorrelated errorsimply that the

value of any error term has no effect on the value of the neighboring error terms when



arranged by their sequential order over time. A seria correlation of the errorsis called
autocorrelation. Autocorrelation affects the variance of the least-squares estimates and
may lead to an underestimation of M SE and confidence intervals. In hypothesis testing, it

could lead to erroneous results indicating a false significance of regressors.

Residual plots vs. time can be helpful in detecting autocorrelation among errors. If the
errorsincrease or decrease steadily with time, so that we find clusters of residuals with the
same sign, we speak of positive autocorrelation. Negative autocorrelation, on the other

hand, leads to residuals alternating in sign too rapidly when plotted vs. time.

A more systematic approach to detecting autocorrelation is based on the assumption that
the errors or residuals are correlated viaalinear or first-order relationship such as Eq. 3-

17 (t = index for time).
e =re_,+a, Eq. 3-17

For uncorrelated errors, we expect that the parameter r equals zero. Positively
autocorrelated errors should give a positive value for r and vice versa. An estimate of this
autocorrelation parameter is simply the sope of the linear regression line through the
residuals (errors) sorted in time order. It can be used to transform the original regressor
and response variables in order to eliminate the effects of autocorrelation:

X, =X

-rx

t t-1

yt‘ =YY
The Durbin-Watson test is most often used to determine if there exists positive
autocorrelation via hypothesis testing. A test statistic is used to determineif r in Eq. 3-16

is zero or significantly larger than zero. The Durbin-Watson parameter is defined by

é (et - et—1)2
d=t2 Eq. 3-18
ae’

=1

-
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Similar to the F- and t-statistic, threshold or cut-off values for d depend on the degrees of
freedom, i.e., the number of data points and number of model terms. For each data set,
there exists two bounds for d (d. = lower bound, dy = upper bound). If d liesin between
these bounds, the test is inconclusive. However, d < d,, indicates autocorrelation, d > dy
indicates no autocorrelation. Tables giving boundary values d depending on probability
level and degrees of freedom are available. As arule of thumb, values of 1.5 and 2.5 can

be used as lower and upper cutoffsin many cases.
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Table 3-1: selected critical values of d as given by Durbin and Watson

n 1 regressor 2 regressors 3 regressors

lower upper | lower upper | lower upper
15 |.08 1.36 .95 154 821 W6
20 1120 141 1.10 154 1.00 1.68
25 1120 1.45 121 155 1.12 1.66
50 | 150 1.59 1.46 1.63 1.42 1.67
100 | 1.65 1.69 1.63 1.72 161 1.74

(one-sided probability level of .05 (95%), excluding the intercept) (J. Durbin and G. S. Watson,
Biometrika, Vol. 38, 1951)

3.2 Application: Multiple and Polynomial Regression Main Dialog (ll):
Regression Summary, Residual Analysis, Outlier Analysis, and
VIFs

3.2.1 Output Area of Main Dialog (I1): Summary of Regression and VIFs

After performing aregression, the summary area contains alist of the parameters
described in detail in the previous chapter (see aso Fig. 2-4). In addition to the ANOVA
table and the regression coefficients window, which give indications for the significance of
the model and the parameters, this list allows the user to get a quick overview of the
quality of the fit and the predictive power of the model. For a theoretical introduction of

the parameters listed, see the previous chapter.
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Multiple Regression
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Figure 3-1: Main Dialog, Output Summary and VIF table are highlighted

Previous

This button opens a window which shows the summary results of the previous mode,

which is convenient when comparing a new model to the previous one and gives important

clues when comparing results in a stepwise regression analysis.

VIFs

VIFs, which measure multicollinearity, can be found in the last column of the regression

coefficients window at the bottom of the output area of the Main Dialog. As mentioned

before, large VIFs (>10) indicate multicollinearity among the regressors.

3.2.2

Outlier Button

The outlier button opens a dialog box which, after performing aregression, gives a

convenient overview of aresidual analysis based on the regression model used. Listed are,
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if present, standard residual outliers (absolute standard residual >3), potentiadly influentia
leverage points (diagona element of the hat matrix, hy, >2p/n), and potentially influential
observations or cases based on Cook’s distance D (D>1). A detailed tabular and graphical
residual and outlier analysis using all data pointsis possible after creating the XL S output
sheet containing the complete Essential Regression analysis by using the Make XLS button
(see Chapter 5.3).

3.2.3 Response Transformation in Essential Regression

Asdescribed in Chapter 3.1.4 about residuals, a response transformation can be useful to
stabilize the variance of the model. Essential Regression supplies the user with a selection
of possible response or y transformations. The Y Transformation drop-down list box

contains the following options:

None no tranformation (default)

In(y) uses the natural logarithm (In) of y in the analysis
1ly uses the reciprocal value of y

exp(y) uses the expression €’

sqrt(y) uses the square root of y

center centers the response (see Chapter 1.1.2)
standardize standardizes the response (see Chapter 1.1.2)

When selected, the response will be transformed before performing the regression analysis.
The origina datain the spreadsheet, however, will remain untouched. Note, however, that
logarithmic and square root transformations cannot be performed on negative numbers,

and the exponentia transformation cannot be used with very large numbers.

3.24 Graphs button

The Graphs button opens another dialog which shows avariety of scatter plots useful for

graphical residual analysis. After performimg a regression anaysis, this complements the
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tabular residual and outlier analysis performed when pressing the Outlier button. The

following graphs for residual analysis and model adequacy checking are included:

predicted vs. observed response

raw residuals vs. predicted response

standardized residuals vs. predicted response

studentized residuals vs. predicted response

expected normal value (rankit) vs. raw residuals

expected normal value (rankit) vs. standardized residuals
expected normal value (rankit) vs. studentized residuas
response vs. individual regressors

response vs. observation or case (to detect trends over time)

raw residuals vs. observation or case

The dialog showing the graphs contains then following buttons:

<<Graph n of m >> buttons
Scrolls back and forth through the selection of graphs. The total number m of graphs

varies with the number of terms (regressors) in the model

Add Trendline and Remove Trendline button
The user can add aregression line to the graphs to visualize possible trends in the plotted
data.

Exit
Pressing this button takes us back to the Main Dialog (this button does not quit ER!)

The dialog shown after pressing the Graphs button is for visual inspection only. The
options of Essential Regression which allow the user to generate editable , storable, and

printable output are described in Chapter 5 of this book.
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4. Model Optimization

4.1 Theoretical Background

41.1 The Problem of Finding the Best Regression Model

Quite often, we do not really know how many of a given pool of potential factors are
really significant contributors to an effect or response. Also, there might be interactions
and/or higher order effects we have to consider. Also, “real world” data can be
inconsistent and saturated with outliers leading to misspecified, unrealistic regression
models. Normally, when in doubt, we start out by including all the possible regressors into
the model equation. We might end up with a regression model that contains all of our
potential input candidates, but our nonstatistical intuition and alook at the model
adequacy tests tell us more or lessinstantly that something is wrong. Usually, the model
shows a very good fit as judged by the R®. However, the adjusted R? and the M SE are
quite likely to cause concern. Also, some of the regression coefficents might be
characterized by low significance (high P-values, see Chapter 2.1.3). What we need isa
technique to select a reasonable subset of variables and/or their interactionsin order to
arrive at amodel which is satisfactory. “ Satisfactory” usually means that the “fit”, i.e, the
R? can be lower than in the full model, but the significance of the remaining factorsin the
model, the adjusted R?, the R? for prediction and the M SE are lower in the “optimized”
model. What we try to achieve is a trade-off between accuracy when reproducing the
historical data and predictability or reliability when applying the model to new data.

Technically, when selecting a subset of potential regressors for an optimized model we
introduce bias into our coefficient estimates. Thisis one of the main reasons why al
methods for finding optimized regression models are somewhat controversial and, more
importantly, they cannot guarantee usto yield the one best model. However, when

keeping unnecessary variables in the model, we might actually end up with a higher
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variance of the coefficient estimates or the predictions even though the estimates are
unbiased. So, what we have to do is to find the model which reduces the variance more

than increasing it due to the bias introduced by selecting a subset of variables.

4.1.2 Performing All Possible Regressions and Criteria For Finding the Best
Model

The original set of statistical methods implemented in the Analysis Toolpak of Microsoft
Excel® does not contain automated methods for optimizing regression model equations.
Instead, the user has to “optimize” the model by more or less randomly picking variables
and trying to find a better model by trial and error. Or, one has to calculate all possible
regression models to pick out the best. This can be quite tedious when there is a plethora
of potential regression variables, especialy if one hasto do this manually, one model at a
time, in Excel®. But what are the criteria for the “best model” ? One popular method uses
the Coefficient of Multiple Determination, R?, to assess the “fit” of amodel equation.
However, usualy, this value tends to get greater with the addition of more variables,
irrespective of the significance of the variable added to the model. For a given number of
variables, however, the R? can be used to determine the best among this subset of model
equations. When comparing models with different numbers of variables, the adjusted R
(see Chapter 3.1.2) is more meaningful. This parameter can grow even if the number of
variables decreases! In other words, the “best” model would be the one with the highest
adjusted R Thisis, by the way, equivalent to looking for the model with the lowest MSE
(Mean Square Error, see Chapter 1.1.4). When comparing models with similar adjusted R?
and MSE values, it can be helpful to take alook at the R? for Prediction (see Chapter
3.1.5).

In Essential Regression, the user can perform a quick scan of all possible regression
models containing no more than 5 regressors to compare their R? and adjusted R? values.
This automated feature is a welcome addition to the methods for variable selection
described in the following chapters.
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4.1.3 Stepwise Regression: Forward Selection of Variables

Sometimes, our intuition is a good starting point when selecting the more relevant
variables from a pool of candidate regressors. However, there are standardized techniques
available which use specified criteriafor telling us if anew model is actualy better than the
previous one. In Essential Regression, we implemented Forward Selection, Backward
Elimination, and the combination of both, which we called “ Automatic Model
Optimization” or “AutoFit”. We think thisis one of the most welcome features of
Essential Regression adding a substantial amount of convenience to the Multiple

Regression anaysis.

When applying the Forward Selection method, we start out with amodel containing no
regressors beside the intercept. New regressors are added to the model one at atime and
the F-statistic introduced in Chapter 2.1.2 is used to decide if the additional regressor
variable actually improves the model. In other words, the first regressor variable we pick is
the one leading to the highest F-value when testing the significance of the regression
model using only one regressor and the intercept (see Chapter 2.1.2). Stepwise
Regression methods use a threshold value for the lowest possible F, usualy caled F, (or
the highest corresponding probability value, P,,) which determinesif any regressor is
deemed significant enough to start building a model. The next regressor which is added is
the one which gives the highest partial F-statistic or, in other words, which shows the
highest partial correlation with the response after accounting for the effects of the other
variables dready in the model. If the model aready contains the variable x; , and x, isthe
new regressor, the partial F-statistic used to find the next variable can be expressed as
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_ SSR(Xy,%;,0,) - SSR(xy,by)
- MSE (X,,X,,b,)

Eq. 4-1

where SSR stands for the Regression Sum of Squares, MSE is the Mean Square Error,
and b0 denotes the intercept. If there is no regressor which would exceeds the predefined
Fn, the Forward Selection procedure stops.

4.1.4 Stepwise Regression: Backward Elimination of Variables

The reader will learn with only amild surprise that Backward Elimination works in the
opposite direction of Forward Selection. We start with amodel possibly loaded with
redundant regressor variables and try to strip it down to the really meaningful core.
Actudly, thisis the approach which is more widely used because it allows the analyst to
get an idea of the quality of the most comprehensive model before removing variables. In
surface response modeling, quite often the models with quadratic terms and with or
without interactions between linear terms are used as a starting point. The selection
criteriafor removing or eliminating a variable is the partial F-statistic, as in Forward
Selection. However, now a Fy-vaue is defined indicating the threshold F-value below

which aregressor can be eliminated.

4.1.5 Automatic Model Optimization

If alarge number of potential regressorsisin our “pool of candidates’, thereis also alarge
number of possible regression models. Proceeding through the Stepwise Regression
process in only one direction (forward or backward) does not necessarily give us the same
answer. Regressors which are important at the point when we add them to the model
might actually become insignificant when more regressors are added, and a variable
removed from the model might have become much more significant at a later point had we
left it in the model. There are bifurcations in the paths leading to an endpoint in the
Stepwise Regression methods which might lead to better end results, but we can’t know
unless we go back and choose a different route. Fortunately there is a method available

which combines both the Forward and Backward techniques of Stepwise Regression. This
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method is sometimes referred to as Stepwise Regression. In Essential Regression, we
called it Autofitting because it allows us to step through the process of finding a subset
model from a selection of regresson models amost “automatically”. Thisis done by
adding a new variable according to the Forward Selection method and by then
reevaluating the variables already in the model using the partial F-statistic described
prevously. When necessary, one of the variables is then removed via Backward
Elimination. Obviously, two threshold F-values (Fi, ans Fo) or the corresponding P-values
have to be defined in order to follow this procedure. They do not necessarily have to be
the same values. In fact, F, is usually greater than F,: to make it more difficult to add

another variable to the mode!.

Who ever had to go through the tedious phase of selecting a good model when many
regressors are present will appreciate the advantages offered by an “automated” selection
process. However, care has to be taken in making sure that the result is really meaningful.
In other words, maintain caution when using the Stepwise Regression procedures and do
not accept physically meaningless model equations just because they mathematically are

the optimum of the Autofitting process.

4.1.6 Transformation of the Response

We mentioned the transformation of the response variable, y, in Chapters 3.1.2 and 3.1.4
in connection with residuals and outliers (Chapter 3.1.4). As described there, sometimes a
pattern in the plot of the residuas vs. the response variable indicates that the error
variance is not constant and depends on the response. Model inadequacies such as these
can lead to inadequate models even after performing a thorough Stepwise Regression .
Transformations of the response can be employed to find a new “starting point” for the

Stepwise Regression.
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4.2 Application: Multiple and Polynomial Regression Main Dialog (I11):

AutoRegress Area

42.1 Overview

The AutoRegress area can be found in the upper right hand corner of

“AutoR egress
fhutoFit ] Fik Al

All Transfarms

the Multiple and Polynomial Regression Main Dialogs. We assume the

user has selected potential regressor variables and aresponse in the

rFonward: | )

CitSignit 01 2] | Input Dialog and has continued to the Main Dialog. All possible
<Back Elime | < |

variables are listed in the Select Term list box of the Input Area. In

Cit Sigrit 01 [2]

______ ———== order to find an optimized model, the user can now apply Forward
Figure 4-1: Selection, Backward Elimination, Autofitting and or Response
AutoRegress Transformation. The subsequent paragraphs describe the functionality
Area behind the buttons in the AutoRegress area.

4.2.2 Perform All Possible Regressions

Fit All button

After pressing this button, Essential Regression will ask the user to specify the maximum
number of regressors to include. Depending on the number of model terms, the maximum
number of models can be quite large (hundreds or more). The program will then calculate
the R? and adjusted R? values of all possible model equations based on the variables listed
in the Select Term list box. A new Excel worksheet will be generated with a sorted list of

the modelsand parameters.

4.2.3 Stepwise Regression in Essential Regression

Critical Significance Spinners
This allows the user to predefine the threshold values of the critical significance for

Forward Selection and Backward Elimination which correspond to the F, and Fo values
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described in the previous chapter. Remember, however, that the lower the P-values, the
more significant the regressor, and lower critical significance values mean that it becomes
more difficult to enter or delete a regressor variable to or from the model. By defaullt,
values for the critical significance of 0.1 for both the Forward and Backward step are

preselected. However, these values do not have to be the same.

>Forward> button

By pressing this button, a Forward Selection step will be performed based on the
predefined critical significance. The “>>" button to the right of this button performs a
continuous Forward Selection procedure until there is no regressor left which falls below
the critical significance value. To start the Forward Selection, no variable needs to be
selected, i.e, listed in the Current Model list box.

<Backward Elimination< button

Performs a Backward Elimination step based on the predefined critical significance. The
“<<” putton to the right of this button performs a continuous Backward Elimination
procedure until there is no regressor left which exceeds the critical significance value. To
start the Backward Elimination, variables need to be selected, i.e., listed in the Current

Model list box. Usually, one uses the full model to start with a Backward Elimination.

AutoFit Button

Starts the automated selection of the “best” model using repeated Forward and Backward
Stepwise Regression until no further improvement can be detected. Note that the
currently evaluated regressor variable isindicated in the Excel® status bar. When this
procedure starts, al regressor variables are removed from the Current Model list box. If
successful, a message “ Autofit converged!” will indicate that the procedure has
terminated.

If Essential Regression cannot find any variable to add or delete, a message box will come

up indicating this result to the user. If either the stepwise or the continuous procedures are
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successful, the new model will be displayed in the Summary, the ANOVA table, and the

regression coefficients window in the Main Dialog.

All Transforms Button

This button allows the user to quickly perform a series of regression analyses based on the
current variables in the model and using all of the response or y transformations given in
the Y Trans drop-down list box (see also Chapter 3.1.4). Thisis useful to decide whichy
transformation could be a good starting point for a Stepwise Regression. Essential
Regression will come up with a dialog window showing the R? values of all
transformations and will indicate the best model. After confirming the dialog, the selected
model will be displayed in the Main Diaog.

Transformation Results I

Tranzfarm B2

Nore 0.997726
Lefy]  0.399540
1/7¥) 0996142
explY] 0745595
sqitfy] 0999335

Best transform Lnl'] has been selected.

Figure 4-2: Result of analysis of all possible y transformations

5. Essential Regression Output

5.1 Graphical Evaluation of Residuals

In Chapter 3, we aready have discussed the mathematical foundation of resduals and
outliers and the benefits of both tabular and graphical residual analysis when assessing the

quality of our regression model. However, since this part of the book deals especially with
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the graphical and tabular output capabilities of ER, we are going to explain in more detail
the most important aspects of using graphs in model adequacy checking. This section
complements sections of Chapters 3.1.4 and 3.2.3, and the less-experienced user is well-
advised to read those first.

The figure below shows atypical Normal Probability Plot of the Expected Normal Vaues
(Rankit) vs. the Residuals. Plots like this are extremely important when trying to decide if
the “error structure” behaves as expected, i.e., if the errors are distributed normally. If

they are, the residuals will fall on a straight line. If the residual plot is pronouncedly S-
shaped, with both ends turning away from the straight line, the error distribution is said to
be “heavy-tailled”. In this case, an outlier analysis becomes important, and the tables of the
parameters introduced in Chapter 3.1.4. (Residuals, Cook’ s Distance, etc.) have to be

studies for cases exceeding the threshold values.

Expected Normal Value (Rankits) vs. Residuals
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-4.000 -2.000 0.000 2.000 4.000 6.000
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Figure 5-1: Normal Probability Plot of Rankits vs. Residuals

When trying to find outliers or explain unusual residuals, it can be useful to smply plot the
residuals vs. the cases sorted by the case number. Thisis of importance when the cases

(observations, experiments) are sorted by time, for instance, and can help find hidden
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trends in the residuals or smply “bad” results. In the next Figure, for example, a possible
trend in the residuals can be detected.

Residuals vs. Case

5.000 .

4.000

3.000
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*
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0.000 ¢ ¢ . .o \
- .
1.000 / T
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Residuals

*

-4.000

Case

Figure 5-2: Plot of residuals vs. case with a possible trend (indicated by line).

Aswe mentioned in Chapter 3, the residuas or errors should not correlate with the
response. When plotting the residuals vs. the expected or predicted response, they should
form aband around O with a constant width, i.e., the variance should be stable with
respect to the predicted response. If there is a different pattern is this plot, it can help usto
find atransformation for the regressor variables or the response leading to a better model,

i.e., aregression model with a stable residual variance.

The following plots of residuals vs. expected (predicted) response show afew of the
patterns which can occur. The first two plots show typical “funnel” patterns indicating that
the error variance increases or decreases with increasing y predicted. The double-bow
pattern in the next graph can occur when the predicted y is a proportion between 0 and 1.

The U-shape in the last graph indicates nonlinearity. In this case, other regressors or
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higher-order-terms might have to be included in the model. The y transformation which

might help stabilizing the variance is shown in each graph.
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Figure 5-3: Patterns in residuals vs. predicted response plots and possible

transformations to stabilize the variance
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5.2 Predicting Observations

The reason for developing aregression model is not only to fit historical data, but also to
be able to predict future observations. A good regression model should enable usto do so.
However, in Chapter 1 we already introduced the concept of confidence intervals and
uncertainty with respect to predictions. When calculating predicted responses, we must
not forget that there is a confidence range associated with each prediction. We have to
say, for example: “ The predicted response will be y plus/minus the confidence range at the
given probability level”.

The reader might recall that there are different equations used for the confidence limits for
the mean response and the confidence limit for new observations (see Equations 1-28 and
1-29). Thefirst is used when the mean response for a series of experiments or cases at a
given data point within the range of the historical data has to be calculated. The second
equation gives the confidence limit for asingle new observation within or outside the
range of historical data. This confidence range is wider to reflect the increased uncertainty

associated with the prediction of a single response.

Also, both confidence limits vary with the location of the data point in x-space, i.e., the
range of the regressor variables. The intervals have a minimum at the center of this range.
The more the data point is located at the periphery of the range of the data used to
generate the model, the wider the confidence limit, i.e., the more uncertain the prediction.
One can see that clearly in Figure 5-4 for the case of Simple Linear Regression (only one
regressor plus intercept). In cases where we exceed the range of original data, we actually
perform an extrapolation. A model that fits well within the range of origina data might
perform badly when extrapolating! Unless there is sound physical evidence for the vaidity
of our model outside the range of original data, every extrapolation outside the range of

origina datais inherently unreliable!

When only one or two variables are in the mode, it isrelatively easy to determineif a

given prediction constitutes an extrapolation. However, for more complicated models we

72



can calculate the expression x' (X' X) 'x which was used to determine the confidence
limits (Equations 1-28 and 1-29). If this value for a given setting exceeds the range of the
hat matrix diagonals (see Chapter 3) in our historical data set, we perform an
extrapolation. This calculation is done in Essential Regression automatically every time we

predict a new response.
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Figure 5-4: Typical plot of the predicted y and the Confidence Interval for the Mean

Response at 95% significance level vs. the regressor, X.

5.3 Application: Essential Regression XLS Output Worksheet

53.1 Make XLS Button-Overview

So far, we have described the features of Essential Regression which allow the user to
quickly get an impression of the quality of the regression model by producing dialog and
message boxes, showing the parameters important for model adequacy checking in a
summarizing fashion. All these features, however, produce only temporary results which

change when a new model equation is chosen. To obtain a permanent and also more
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detailed output after aregression analysisin complete, the user has to press the Make XLS

button in the Main Diaog. This starts a procedure which creates another Excel .

worksheet (XL S-sheet) in the currently active workbook containing the data. This new

output sheet contains all the information already discussed in connection with the main

dialog and, in addition more detailed tables and extended graphical features including

surface- and contour plots for models with two or more regressors. When the output sheet

is generated, the following message appears.

Workzheet Created

Your worksheet has been created.

Y'ou may now click Ewit for further analyziz.

The waorkboaok, must be gaved with the File-5ave

command before leaving Excel if you want to

permanently zave the regression.

B

Figure 5-5: “Worksheet Created’ Message after pressing the Make XLS button

Note that the modified workbook still needs to be saved to make the changes permanent!
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Figure 5-6: Buttons in XLS sheet

By default, the new output worksheet generated by
Essential Regression is named Sheet name of data
sheet_Rn, with n counting the output sheets already
generated from the data sheet.

The output sheet consists of several areas separated
from each other and containing the information
described in detail further below. A series of buttons
in the top rows of the “A” column of the
Spreadsheet allow the user to jump to specified
output areas and back. Keep in mind that all the
areas are on this one spreadsheet. Every area
contains a Back button which allows the user to

jump back to the starting point on the spreadsheet.
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This worksheet created after pressing Make XLS isanormal Excel spreadsheet! This
means, the user can copy, edit and print any area on this sheet! However, moving around
the different areas can obvioudly affect the buttons which take the user to these areas. For

this reason, we recommend not moving the output areas.

5.3.2 ANOVA Table, Regression Coefficients Table, and Correlation Matrix

Located in Columns “C” through “H” next to the buttons, the user will find the regression
model equation, and the already familiar summary and ANOVA tables for the regression
model (see Chapter 1 for details).

Regression button
This button takes the user to the table of the regression coefficients and significance tests

(see Chapter 1)

R Matrix button
This button allows the user to inspect the R or correlation matrix of the regressors. As
explained in Chapter 3.1.6, this inspection can be useful to find out if regressors are

linearly correlated with each other.

5.3.3 Tabular Output of Observations, Predictions, Residuals, and Outliers
Data button

By pressing this button, the user is taken to an area of the spreadsheet containing a
detailed table of the regression input data, observed and predicted responses, and a
plethora of additional parameters alowing for athorough analysis of residuals, outliers,
and influential observations. If applicable, the cutoff values for certain parameters are

given above the respective columns. The table contains the following columns:

1. Case, case or observation number in the order of the raw data table
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11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24,

X1....,columns for the k regressor variables including interactions and higher order
terms

obs, observed responses

Predicted obs, predicted observations

Residuals, raw residuals

Standardized Residuals

Studentized Residuals

PRESS Residuals

R Student

DFFITS

Covariance Ratios

Std Error Prediction, the Standard Error for the prediction of new observations
Std Error Mean, the Standard Error for the prediction of the mean response

P% Confid Int Pred, the Confidence Range for the prediction of new observations
at the predefined significance level P%

P% Confid Int Mean, the Confidence Range for the prediction of the mean
response at the predefined significance level P%

+P % Confid Int Pred, the upper Confidence Limit for the prediction of new
observations at the predefined significance level P%

-P % Confid Int Pred, the lower Confidence Limit for the prediction of new
observations at the predefined significance level P%

+P % Confid Int Mean, the upper Confidence Limit for the prediction of the mean
response at the predefined significance level P%

-P % Confid Int Mean, the lower Confidence Limit for the prediction of the mean
response at the predefined significance level P%

Hat Diagonal, the value of the hat matrix diagonal element for this observation
Cook's Distance

Cumulative Probability of the residual of the given observation

Expected Normal Value (Rankits) of the residual of the given observation

dfbetas, k columns of dfbeta values for each of the k regressor variables
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A detailed discussion of these parameters and their significance is given in Chapter 3.

Outlier button

Shows a summary table of outliers or influential observations, similar to the Outlier button
on the Main Diaog. If any of the observations exceeds one of the cutoff values for
Standard Residual, Cook’ s Distance, and hat matrix diagona, it islisted here (for an

explanation of these terms, see Chapter 3).
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5.34 Printed Output

Print button

The output areas discussed in the previous chapter can be printed after pressing this

Output Selections to Print |

~Regreszion Result

button. A dialog window asks the user to specify the
areas to be printed. After pressing “OK”, the Print

¥ Sunmary, ANOVA, Model Preview window of Excel will be displayed. Here,

: : the user can make modifications to the page format,
™ Residual Analysis

etc. After pressing “Print”, the areas shown in the

™ Outlier Surnmary ) ] ) o
preview will be printed. Note that printing is aso

™ Comelation tatri

Cancel I

possible by selecting an area directly on the output

worksheet and printing using the standard Excel

print functions!

Figure 5-7:Print Selection Dialog

5.35 Prediction of New Observations

Predict button
A new observation or the expected mean value for a given observation can be predicted
using this button. A dialog box asks the user to specify the settings for the regressor

variables.
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Predict ¥ ¥alue

b | IE Confidence 95 E
e !.3

Y =0a.87
tean Confidence Interval = 0918
Prediction Confidence Interval = 4.161

Factor[z] within reqressor vanable hull [RVYH]
hat diag value 0.05 < hat diag ma= 0.20

Figure 5-8: Predict Y Value Dialog

Also, aspinner control is provided to adjust the probability level of the confidence
intervals. The higher the given number, the wider the confidence limits will be (to increase
the probability that the predicted value lies in the confidence range, the wider the range
must bel!). The Calc button starts the calculation. The result is shown in the edit box. As
described earlier, the Mean Confidence Interval will aways be narrower than the
Prediction Confidence Interval. If the chosen settings for the regressors constitute an
extrapolation, the message at the bottom of the prediction output will say that the
“Factor(s) are outside the regressor variable hull (RVH)”. The expression hat diag stands
for diagona value of the hat matrix. If this value, calculated from the given settings of the
regressors, exceeds the maximum value of the origina data, hat diag max, the current

prediction extrapol ates the data (see Chapter 5.2).

The Exit button closes this dialog.

5.3.6 Finding Input Variables for Given Output (Optimization Problem)

Optimization is here defined as the process of finding “optimized” settings of the

regressors in the model in order to obtain a predefined output or response value.
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Optimize button

After pressing this button a matrix is displayed showing the input variables (regressors, X-
values), their min and max values, their average values (means) and the current settings of
the regressors. By default, these current values are set equal to the average values. The

corresponding response value is displayed below this matrix as“Y”.

In addition, the Solver Add-In of Excdl isloaded and the Solver Dialog is displayed. If,
after pressing this button, an error message is displayed indicating that “ solver.xla’ cannot
be found, the Solver Add-in has to be added to the Add-In List in Excel by selecting the

Add-Ins option in the Excel Tools menu!

The Solver Dialog displayed by Essential Regression aready contains the appropriate
criteria. (Note: For some unknown reason, in Microsoft Excel 97, this automatic
procedure sometimes will not work , and the user must select the Solver Add-In from the
menu and manually click 0.k.!). The user only hasto select the appropriate “Equal to:”
option button and, if a specific value for the response, Y, is desired, enter this value. Note
that, by selecting the Max or Min option, Solver will try to find the settings for the
regressors which give the highest or lowest value for Y!
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Figure 5-9: Solver Dialog after selecting the Optimize button

After pressing the Solve button in the Solver Dialog, the Solver will try to find a solution
for the optimization problem. When finished, the current values in the regressor matrix
will be modified accordingly, and the new value for the response, Y, will be displayed.
Another Solver dialog will come up and ask the user to confirm the changes. Only then

will the modifications become permanent.
Note, that there are more options on this dialog to choose from. We cannot delve into the

capabilities of the Solver Add-In in this book, but we recommend reading the Excel help
file or other published information about this Excel Add-In.
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Back |
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72.00001 I _I
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. press F1 | ] | |

Figure 5-10: Solver Dialog after performing an optimization

The optimize area is on the same worksheet as the other output area. As usual, the Back
button next to the regressor matrix takes the user back to the top left corner of the output
worksheset.

5.3.7 Graphs: Scatter Plots, Confidence Limits, 3D- Plots, and Animations

Essential Regression contains a plethora of graphical output capabilities. Two-dimensiona
scatter plots are included to visualize the relationships between the columns of the data
table accessable through the Data button as described further above. For regression
models with two or more variables, spatial surface plots and their two-dimensional
projections, also called contour plots, are available. All these graphs can be selected,
edited, copied, and printed as standard Excel graphs.
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Graph button

After clicking this button, the cursor jumps to the graph area. This area contains all the
scatter plots which can be generated from the columns of the data table described in the
section about the Data button. All the graphs can be viewed in a single embedded Excel
chart. They and x variables for the desired plot can be selected from the corresponding
drop-down list boxes located above the vertical axis and below the right end of the
horizontal axis. The graph is updated automatically according to the selection. Itis
important to remember that the graphs can be extensively formatted with the normal MS

Excel graph editor. Double clicking on the graph will activate the graph editor.

| ov | bpw | Dx | DY | DZ | EA | EB | EC | ED | EE
Back ‘ Remove Trendline | “iew Graphs I
SR ;I Predicted ¥ ws. Y v = 0.9796x + 1 2031
R =0.9796
a0.00
8000 of

70.00 ur"é
£0.00 J‘ﬂ!

50,00 5
40,00 * "
30,00

2000
10.00
0.00

Predicted ¥

Figure 5-11: Graph area of output sheet with 2D scatter plot of predicted vs.

observed response Y including trend line and regression equation

The graphs can be manipulated in severa ways:

Add Trendline-Remove Trendline toggle button
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Adds or removes linear trendline, R*-value, and regression equation for given selection of

axis variables.

View Graphs-Graph m of n toggle button

Browses through a selection of standard plots to evaluate the regression model. Included
are 8 standard plots similar to the selection we described in Chapter 3.2.4 (Graphs button
on the Main Dialog) which are helpful for model adequacy checking:

Predicted Response vs. Observed Response
Raw Residuals vs. Predicted Response
Standardized Residuals vs. Predicted Response
Studentized Residuals vs. Predicted Response
Raw Residuals Normal Probability Plot
Standardized Residuals Normal Probability Plot
Studentized Residuals Normal Probability Plot

Raw Residuals vs. Case

© N o o &~ w0 DN PR

In addition, there are plots of the observed response vs. the individual regressor variables.

Confidence button

Pressing this button takes us to a graph area showing all possible scatter plots of the
predicted response vs. the columns of the data table described in the Data button section.
In addition, the confidence ranges for the predefined probability level are shown in the
graphs. A Mean-Prediction toggle button alows the user to switch between the
(narrower) confidence range for the mean response and the (wider) confidence range for
the prediction of new responses. The Add Trendline-Remove Trendline toggle button

works as described in the previous paragraph.

Surfaces button



This button brings up the surface and contour plot dialog. In adiaog box, the user can
choose two different regressor variables (independent variables) for the x; and x, axis of
the plot. The third axis will be used for the response Y (dependent variable). After
selecting the regressors (x; and x, variables for the plot), the 3D-graph area of the output
worksheet with a surface plot of the response vs. the two selected regressorsis displayed.
In addition, a matrix of all the regressors in the modd is displayed smilar to the onein the

optimization area described further above.

| FF | 6 | FH | B | R | K | FL | M | FN | FO°

Term X X2 |
Data Min 0 ]
Data Avy | 5693578 0463265
Diata Max 10 1
CurWalue 5693878 0463265

Back | Contour | < > | +| -] p3 0.4 06 07 05 0

44

19

£4

E30.0-93.3 &9

WEE.7-80.0 b4

@:533-66.7 Eg

=3

@400-53.3 75

@257-400 79

O13.3-26.7 a2

mOO-133

Figure 5-12: 3D-graph area of output sheet with surface plot for 2-regressor models

It isimportant to remember that the graphs can be extensively formatted with the normal
MS Excel graph editor. Double clicking on the graph will activate the graph editor.

There are severa possibilities to manipulate the plots:

85



3d-contour toggle button
This button to the right of the Back button allows the user to switch back and forth

between a 3D (surface) and 2D (contour) display.

<,> buttons

With the arrow buttons, the user can rotate the plots to the left (<) or right (>).

+,- buttons
The plus (+) and minus (-) buttons allow the user to increase or decrease the number of

levels (= colors) shown in the plots.

Above the surface/contour plot area, atable is displayed which gives minimum, maximum,
average, and current values for the regressors (terms) of the regression model. By defaullt,
the current value is set to the average value for each regressor. Note that all the

regressors in the model are given, not only the ones used in the surface/contour plot. This

table offers the following possibilities for further manipulation of the graphs.

By changing the Minimum/Maximum values of the x; and x, variable (regressors used in
the graph) in the regressor matrix, the scale of the corresponding axis (x; and/or x;) can
be adjusted. The graph will be updated immediately after the new values are entered in the
table.

If more than two regressors are in the model, by default, the regressors which are not
used as x; or X, variablesin the surface/contour plot are set to their average values. To see
the effects of changes in these additional variables, smply change the corresponding
current values for the respective variable in the regressor matrix. The graph will be
updated immediately after the change. As an additional feature in Essential Regression,

this can be done in the form of an automated animation:
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Figure 5-13: 3D-graph area of output sheet with surface plot for 3-regressor model

Movie button (for >2 regressors in the model)

If your model has more than 2 variables, you will find this button above the graph area.
The “movie’ feature alows you to incrementally change the vaue of one variable while
plotting the response vs. two other variables. If you select to loop through these changes
in the movie dialog window, the effect resembles an animation or movie with the surface

moving up and down according to the value of the changed variable.

Pick ¥Yariable to Step Through I
ng L‘
E xit
Frames I'I n #I

¥ iLoop until esc preszed:

Figure 5-14: “Movie” options dialog
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This effect becomes even more dramatic when preventing Excel from autoscaling the
response-axis. The user can do that in the conventional way by selecting the graph editor
in Excel and changing the settings for the scale of the respective axis.

Since the graphs produced by this procedure are standard Excel graphs, they can be
copied to other spreadsheets or Windows applications like MS Powerpoint or Word. So,
surface or contour plots with different settings of aregressor not depicted in the graph can
be arranged on a page to visualize the effects of this regressor. This generates a quas

four-dimensional graphical representation of the regression model.

5.3.8 Deleting or Duplicating an Output Sheet

Delete button

By pressing this button, the Essential Regression output sheet will be removed from the
current workbook. Thiswill also keep track of the changes in the workbook pertaining to
Essential Regression such as sheet numbering etc. It is recommended to follow this
procedure rather than deleting the sheet by ssimply choosing Delete Sheet form the Excel

Edit menu.

Duplicate Regression menu option in the Regress menu

Activating this menu option generates copies of the current XLS or output worksheet It
also duplicates the worksheet containing the original data for the regression. The XLS or
output sheet must be the active sheet, otherwise an error message is returned!

5.3.9 Starting A New Regression from Output Sheet

Reregress Button

After examining the output sheet, the user might want to continue the analysis of the data
set using the current model on this output sheet as a starting point. Thisis made easy by
using the Reregress button. Pressing this button will start up the Essential Regression

Main Dialog with the current model aready selected! Obvioudy, thisis avery convenient
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feature compared to starting up Essential Regression from the Regress Menu and going

through the model selection process again!

6. Experimental Design

6.1 Introduction

The whole area of experimental design is a very large field which has enjoyed a renewed
industrial interest in the past two decades. A reasonably complete treatment of the topic
would encompass an entire book. We cannot do this. What we will do is cover
experimental design as it relates directly to regression analysis. Therefore, we will confine
ourselves to covering some classic experimental designs whose analysisis amultiple
regression. A prerequisiteisthat all the design factors are continuous quantitative
variables. In contrast to qualitative variables, quantitative variables are easily measured
and described by real numbers. Reactor temperature and reactor pressure are quantitative
variables whereas catalyst type is a qualitative variable. A good experimental design
methodology allow us to properly distribute our experiments within our factor space so
that we can minimize the number of experiments required to develop a statistically sound
relationship between factors and aresponse. The use of qualitative variables in the design

and analysis of experiments is beyond the scope of this book.

In the usual jargon of experimental design, the variables which we are looking to make a
correlation or regression with a measurable output are called factors and the output we
aretrying to predict is called the response. If oneistrying to elucidate functional

rel ationships between quantitative factors and a response, multiple regression is the tool
required to accomplish this. Therefore, al of the methods and techniques covered up to
this point in the book will be completely applicable to analyzing al of the designs
presented here. This chapter will concentrate on explaining how one chooses an
appropriate design for the problem he is trying to solve and the consequences and

tradeoffs involved.
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By the end of the chapter we hope to convince the reader that
1) when one chooses an experimenta design he is also choosing aresponse
regression model
2) for quantitative factors, multiple regression is a appropriate tool to anayze the
design
3) smaller, sequential designs consisting of screening designs followed by

response surface modeling design are preferable to single “ megadesigns’

We will start by covering designs used for screening. These designs are used to
determine if afactor isimportant or not. They are normally done to gain insight into
which factors are important in a particular process. Thisis followed up by response
surface modeling (RSM) where more details regression models are used to determine
response behavior. Inthis chapter, asin all the others, the included software, Essential
Experimental Design (EED), will develop al the experimental designs. Once again,
Essential Regression (ER) will do the analysis. We would humbly submit that this modest
experimental design and analysis software package can meet the experimental design

needs of many of chemists and engineers.

6.2 Screening Designs

The goal of screening isto narrow the along list of potentially important factors into
those that are really important with a known amount of statistical confidence. How one
would intuitively accomplish thisis by running a given factor at two levels (a high level
and alow level) and seeing if varying the level of this factor had any effect on the
response. The simplest design for accomplishing thisis the Two level full factorial
design. Inthiscase, abrute force approach istaken. Every factor isrun with al the other

factors at al their possible settings.
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6.2.1 Two Level Full Factorial Designs

Consider the full factorial experimental design below in Table 6-1 for two factors
generated by the Essential Experimental Design (EED) software. The low setting for a
factor isgiven as-1 and the high setting 1. In this case six total runs are required (four
runs for the main design and two centerpoints). Centerpoints are experiments added to
the design whose settings are at the midpoint of every factor. The response regression

model for thisdesignis

Response =bg+bix +box +b3x;X, Eqg. 6-1

Table 6-1: Full factorial experimental design for two factors

Run | Factor | Factor
1 2

1 -1 -1

2 -1 1

3 1 -1

4 1 1

5 0 0

6 0 0

We can see by doing this design we can estimate the linear effect of each factor (xy, X»)
and an interaction term. These linear terms or linear effects are often referred to as main
effects. Similarly, the EED output for atwo level full factorial design with three factorsis
shown in Table 6-2.
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Table 6-2: Two level full factorial design with three factors

Run | Factor | Factor | Factor
1 2 3
1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1
5 1 -1 -1
6 1 -1 1
7 1 1 -1
8 1 1 1
9 0 0 0
10 0 0 0

Response = bo+b1X1+b2X2+b3X3+b4X1X2+b5X2X3+b6X1X3+b7X1X2X3 Eq 6-2

It is becoming clear that the terms that can be estimated from a Two level full factorial
design are main effects and all the possible interactions from 2 way up to n way wheren is
the number of factors. It isalso clear that higher order terms such as x? can not be
estimated with thisdesign. Thisis obvious from the inspecting the main design. With
only two levels of each factor it is not possible to estimate anything higher than a linear
effect. However, centerpoints have been added to the basic design. They do add a third
level of each factor to the design. A p" order polynomia requires p+1 levels of each
factor. From earlier discussions we know that repeated points in a multiple regression are
necessary if oneisto estimate Pure Error and the Lack-of-Fit (LOF) error. The LOF test
provides adirect test of order of the regression. By looking at the significance of the LOF
fit test we can seeif curvature or a higher order term of the factorsis present or not. We

will show this directly in an example in the next section.
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The addition of centerpoints does not effect the estimates of the coefficients except for the
value of the constant. The number of centerpoints one chooses to do depends greatly on
the preference of the experimenter and the difficulty of doing the experiments. If
experimentation is relatively easy, we recommend four centerpoints for 2 level factorial
screening designs. Essential Experimental Design defaults to 2, the minimum required to
estimate LOF, but it allows a user selected number of up to five or asfew as zero. We
highly recommend centerpoints be used in all experimental designs. If our design
contained any qualitative variables (like type of catalyst), centerpoints would not exist.
Thiswould greatly limit our analysis and interpretation of the experiment. We will not be
discussing how to deal with these kinds of cases. In general, we like to use three or four

centerpoints, if it isfeasible, for full and fractiona factoria screeening designs.

From further inspection of the experimental designsit will be apparent that a computer
program is not required to construct either the response regression model or the design
matrix. One smply hasto run all factors at all levels of al the other factors. The mode is
all possible linear combinations of the factors. The number of runs required for a2 level
full factorial design is 2" where n is the number of factors plus the number of centerpoints.
This causes the number of experimentsto rise rapidly. For five factors 32 runs are
required in the main design. However, we will discuss some more efficient designs which
require fewer experiments to determine the same number of coefficients in the response

regression model, especially as the number of factors to screen becomes larger.

6.2.2 Two Level Fractional Factorial Designs

While full factorial designs are very useful they tend to become very large beyond three
factors. From our previous discussion it is apparent that much of the additional work with
increasing factors is probably not worth it. For example, for five factors, 34 runs are
required. For the vast mgjority of natural phenomena only 15 terms are of interest in the
full response regression model. They are the five main effects and ten two way interaction

terms. (In fact, there are so many terms beyond two way interactions as the number of
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factors increases and they are important in so few cases we have deliberately dropped the
higher order interactions out of the EED response regression model for two level full
factorial designs. Otherwise, they become a major nuisance.) This means half the
experiments in the design are used to estimate three, four and five way interactions.
Typically these interactions are not significant and not of interest to the experimenter.
Fortunately for the practicing experimenter, statisticians have solved the problem of how
to properly fractionate afull factorial design to estimate main effects and two way
interactions without having to do all the experiments required to estimate all higher order

interaction terms.

Typicaly 2 level full factorial designs are fractionated by taking 2 fractions. That isto
say, one can take a half fraction, quarter fraction, eighth fraction and so on. Recalling that
a2 leve full factorial has 2" runs our fractional factorial design will have 2™ runs with the
stipulation that n>p. The obvious questions that arise are 1) which experiments do we
take? (we know how many to take) and 2) what effect does the fractionation have on our

response regression model ?

Consider the main design for a2 level full factorial experiment for three factors (a,b, and
¢) shown below. We have multiplied out the values of the interaction terms and split the
design into two half fractions based on the value of a*b*c. One could take a half fraction
of the full factorial design based on the runsthat a*b*c = 1 (principle fraction) or a*b*c
= -1 (complimentary fraction). Thistwo fractions have different shadings in the table.
In the principle fraction ¢ = & b and in the complimentary fraction ¢ = -a*b. These
equations are called the generators for the design. The word abc is called the defining
word for the design. The defining relation is developed by setting the defining words

equal to plus or minus one depending on the fraction of interest.
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Table 6-3: Main design for a 2 level full factorial experiment for three factors

Run a b c ab b*c arc arb*c
1 -1 -1 1 1 -1 -1 1
2 -1 1 -1 -1 -1 1 1
3 1 -1 -1 -1 1 -1 1
4 1 1 1 1 1 1 1
5 -1 -1 -1 1 1 1 -1
6 -1 1 1 -1 1 -1 -1
7 1 -1 1 -1 -1 1 -1
8 1 1 -1 1 -1 -1 -1

While taking a half fraction of the full factorial design reduces the number of experiments
by one half the effect on the response regression model in not immediately obvious.
Further examination of the design table yields some insight. The following columns have
the same values in the principle fraction (aand b*c, b and a ¢, c and a*b). Therefore, by
taking the a half fraction of thisdesign it is not possible to discern the difference of
response dependent on a, b*c or a+ b*c. The terms aand b*c are said to be aliased with
each other. We have paid a penalty for fractionating the design. We are able to estimate
fewer termsin the response regression model. Rather than eliminating single terms

completely, terms become aliased together when fractionating. In this case

Response = by+b;(a+bc)+b,(b+ac)+bs(c+ab) Eg. 6-3

The terms that are aliased together may be easily derived from the "multiplying” the factor
of interest with the defining relation. In this case, a* 1 = a*abc which gives a = abc.
Since the factor columns are either plus or minus one, the square of any value is unity.
Therefore, & = b* = ¢* = 1 and the final diasesarea=bc, b=acand ¢ = ab. Therefore,
the following response regression models would yield the same result as 6-3 (to within a
factor of 2 on the coefficients).
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Response = by+b;(bc)+b,(ac)+bs(ab) Eq. 6-4

Response = by+b;(a)+h,(b)+bs(c) Eqg. 6-5

In short, it is not possible to resolve all the termsin afull factorial regression model with a
fractional factorial experiment. Two Level Fractional Factorial designs are classified in
terms of their resolution. A designisof resolutionr if no term of f factorsis aliased with
another term of less than r-f factors. The previous half fraction design isaresolution 3
design. Each main factor (a,b,c wheref = 1) is aliased with an interaction term (bc, ac, ab

where r-f = 2).

Resolution 2 - Main effects are aliased with other main effects.

Resolution 3 - Main effects are not aliased with each other but with 2 way
interactions. Two way interaction are aliased with main effects and maybe
other 2 way interactions.

Resolution 4 - Main effects are not aliased with 2 way interactions. Two way
interactions are aliased with other two way interactions.

Resolution 5 - Main effects are not aliased with either main effects or 2 way
interactions. Two way interactions are not aliased with each other or main
effects.

These definitions are summarized in the table below. Understanding resolution is
necessary to choose an appropriate fractionated design. Resolution forms a basis for
running the EED software. In the next section we will confirm that the design resolution
isequal to the number of lettersin the smallest defining word for the design. The
resolution one chooses has a direct effect on the response regression model. By linear, we

mean linear with respect to main effects.
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Table 6-4: Definition of design resolutions

Resolution | Aliases of Aliases of Two Way Response Regression
Main Interactions Model

Effects

2 Main
Effects

3 Two Way Main Effects, Two Way Linear

Interactions
4 None Two Way Interactions Linear
5 None None Linear + 2 Way
Interactions

The above demonstration makes for arelatively smple case. Asthe number of factors

rises, the amount of fractionation we can do and still realize a design of reasonable

resolution rises quickly. In the next section we will use the EED software to create a

Resolution 3 design for six factors.

With fractionated designs it does not automatically follow that there will be separate

fractions for each resolution. In other words, for a particular number of factors a

resolution 5 and resolution 3 fraction may only exist (i.e. no resolution 4 fraction exists).

The reader need not worry about this level of detail when using the EED software. In this

case, aresolution 4 design will not be an available. Only aresolution 3 and resolution 5

designs could be chosen by the user.
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6.2.3

Using the EED Software for a Two Level Fractional Factorial Design

The Essential Experimental Design (EED) software is launched by opening the EED22.xla

file from within Microsoft Excel® Version 5 or 7/95. After seeing the main startup screen,

experiments are launched by the new DOE menu to the immediate right of the Edit Menu.

e[ 2R

@Eile Edit WulIJ ‘iew Inzert Format  Tools Data  Window  Help

Diesign An Experiment

Simulate Data

S| o] =] 4] 213 K| @8 o ] ke

Analyze Design

1| u] =|==I5] 8], [l = 4] m
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"l-i--l A Unload
2|

3
2|

Figure 6-1: DOE menu

Sdlecting Design An Experiment menu item brings up the main design dia og.
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Figure 6-2: EED Main Design Dialog

The Design an Experiment dialog box has severa input sections. Basic input information
common to any experimental design is required in the top Input section. The number of
factors and responses are specified here. The number of centerpoints can also be specified
(provided all factors are quantitative). The user can specify if the experimental runs
should be randomized and if the aliasing structure should be determined.

The design choices are categorized into two main types, screening and response surface
designs. The screening designs are separated by resolution. In fact, resolution is the users
guide to selecting a screening design. One can see as the resolution increases, so does the

number of runs required. We will begin by doing aresolution 3 screening design on six
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factors. We can see that 10 total runs are required for this design. Eight runs for the main
design and two recommended centerpoints. We can simultaneously see that the full
factorial requires 64 runs while the resolution 3 design requires just 8 runs for the main
design. This means that the resolution 3 design is an eighth fraction of the full factorial.

Clicking on the Make Experiment button brings up another dialog box for specifying the

factors.
Factor Definition I
Factar Mame itz Lo Y alue High % alue
b -1 1
o -1 1
d -1 1
& -1 1
f -1 1
| | o | =
A | [ f
<Back < | ok |

Figure 6-3: Factor Specification Dialog

Here the user needs to further specify the factorsin terms of their names, units (if desired),
high and low values. Clicking OK yields the experimental design in the form of an Excel
workbook. On the Experiments sheet we see the main design and a brief description of

what the design is and the response regression model.
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Table 6-5: Output of Experiments sheet (1)

Fractional Factorial, Resolution 3

6 Factors

2 Centerpoints

Linear Moddl with 7 terms

Response = b0 + b1*a+ b2*b + b3*c + b4*d + b5*e +

b6* f

Table 6-6: Output of Experiments sheet (11), design table

Exp #| a

Resp_1

Resp_2

1 |1

C
1
1
1
1

O| | N| O O | W DN
[ —

=
(]
o

o| o r|

EED lists generators, defining words, and aliases for fractiona factorial designs with less

than 16 factors. On the Aliasing sheet we can see generators and defining words (at the

bottom).
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Table 6-7: Generators from the Aliasing sheet

Generators
d=ab

e=ac
f=bhc

Table 6-8: Defining Words from the Aliasing sheet

Defining
Words
abd
ace
bcf
cebd
cfad
bfae
def

We can see that the design was made from three generators. This makes sense since 2°=8
and thisis an eighth fraction of afull factoria design. However, we have 7 defining
words. Where did they come from? The first three come directly from the generators as
in our previous example. The rest come from all possible linear combinations of the first
three defining words. For example, the fourth defining word comes from multiplying the
first two defining words together and remembering that a squared term is equal to unity.
So abd* ace = a’bdce = bdce or cebd and so on. Multiplying a given factor times al the
defining words gives the aliases. For simplicity, the EED software drops four way and

higher terms from the alias report.
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Table 6-9: Alias report output

Factor Aliases

a bd, ce, cdf, bef

b ad, cf, cde, aef

ae, bf, bde, adf

ab, €f, bee, acf

D of O

ac, df, bed, abf

f bc, de, acd, abe

d, ef, bce, acf

e, df, bed, abf

b, cf, cde, aef

c, bf, bde, adf

o BB 8 &

cd, be, bdf, cef, abc, ade|

o
(@]

f, de, acd, abe

bd a, ce, cdf, bef

be cd, af, ade, abc, cef, bdf

bf c, ae, adf, bde

cd be, af, abc, ade, bdf, cef

ce a, bd, bef, cdf

cf b, ad, aef, cde

de f, bc, abe, acd

df e, ac, abf, bed

ef d, ab, acf, bce

Once again, we can see that the design resolution is equal to the number of lettersin the
smallest defining word. If we select the simulate data option from the DOE menu we can
make some experimental data. In thisfirst dialog we can choose which variables we want
to be important and the form of the equation whose coefficients we will specify. In this

case, we have selected alinear mode!.
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Figure 6-4: Data Simulation Input Dialog

Clicking next brings on the Input Model Coefficients dialog. Here, we can input
coefficients for the model terms, enter a constant term and a noise standard deviation
value. The noise standard deviation is the coefficient that random values pulled from a
standard normal distribution (mean of zero and standard deviation of one) are
multiplied by. In general, the higher the noise coefficient the noisier the simulated data
will be. Some noise in the data is necessary to redlistically model an experiment and to

avoid singularities in the analysis, especially the LOF test.
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Figure 6-5: Input Model Coefficients Dialog

Table 6-10: Simulated Design

Exp#|a|b|c|d|e|f|Resp_1|Resp 2

1 14 11 1 13 11 1) 1414 | 1414
20 -1 1 1 -1 -1 14 345 3.45
3 -1 1 -1 1}-1 -341 | -341
4 -1 -1 1 1 -1 -1f -16.49 | -16.49
5 1 1 -3 1 -1} -1 15.09 | 15.09
6 -1 1 -1 -1 1} -1} 1.13 1.13
7 4 -1 -1 -1 -1} 1] -6.33 | -6.33
8 -1 -1 -1 1 1 1 -17.12 | -17.12
9 O O O O O O 117 6.17
100 0 O O O O 0O -1.10 | 3.90
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For our second response we have copied the first response with one notable exception.
Instead of using just the old centerpoints (Experiments 9 and 10), we have forced some
curvature into the response by adding 5 to the old centerpoints. We will now illustrate
how one can analyze the design. By comparing the LOF analysis with these two
responses, one with no significant curvature (Response 1) and one with significant
curvature (Response 2) we will show how curvature can be detected with replicated
centerpoints in this two level fractional factorial design. We can now analyze the design
by selecting Analyze Design from the DOE menu. This brings up an alternative startup
procedure for Essential Regression analysis. Thefirst dialog that will appear is shown
below.

Multiple Regrezsion Input !

Responze 1]

IHesp_'l _:_-_I

¥ Tranzfarm

iN-:une j

Coefficients Confidence Intervals——— Help |

4
’7 5 ;I J —'I FrMext:» I

Figure 6-6: Multiple Regression Input Dialog of EED

The user is prompted for the confidence level of the confidence interval calculations, the
response for which the regression will be done, and X or factor transformation to be
specified. The notable difference between this startup and the usual Essential Regression
startup is that the user can not arbitrarily pick regression model terms (i.e., full quadratic,
cubic, etc.). The obvious reason for thisis the experimental design chosen restricts the
maximum order of the model terms. In this case we will be restricted to linear model
terms. This becomes very clear after clicking Next. This brings up the main regression
dialog. If one alows the program to AutoFit the data by clicking the Auto button the

dialog box shown below will be the resullt.
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Multiple Regression |
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T LOF Error 2470073 09 1.238037 0.B05281 0581564 2
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Figure 6-7: Multiple Regression Main Dialog

There are only linear terms available for inclusion into the regression. In this case the
AutoFit feature performs well with the default settings. The coefficients for aand b are
close to their "true" values of 5 and 10. We know that this particular response has no
curvature since no higher order terms were used to create it. The LOF test indicates that
LOF significance is high, or that the probability of getting this high a LOF value from
random chance aloneislow. Thisresult may be interpreted that the correct functional
dependence of aand b is linear and not quadratic or higher. The reader may try to
improve on the model developed using the AutoFit routine by adding or removing terms
from the model. Inthiscaseit is probably not possible to improve on the model.

Consider the output below from doing the identical analysis on Response 2.
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Multiple Regression |
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Figure 6-8: Multiple Regression Main Dialog

It isinteresting to note that the coefficients of aand b are unchanged even though the
centerpoints were significantly shifted to guarantee curvature in the response. The
adjusted coefficient of variation is somewhat reduced but still very good. The LOF test
reveals that there is very significant evidence of missing higher order terms or LOF. Note
that the LOF test is generally more important to inspect if one feels that the important
factors have been captured in the regression. That isto say, for good adjusted coefficients
of variation with all the factors of interest. The LOF test may not indicate any missing

higher order terms but this is not so important if major factors are missing.

At this point the reader is strongly encouraged to run the EED/ER software in simulation
mode. Setup screening design and simulate data with varying levels of noise which may
be thought of as experimental or measurement error. We think you will be surprised at

what you find. The error does not have to get very high in order for unimportant terms to
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appear to be important and other problemsto arise. Thisis especialy true when one
screens higher numbers of factorsin fewer and fewer runs (these dasigns are said to

approach saturation, see next section).

6.2.4 Plackett-Burman Designs

In the table below we have determined how many runs are required in the main design for
a Resolution 3 two leve fractiona factorial design. The runs shaded in gray are said to be
saturated. Thisis because we know from linear algebrait is not possible to determine
n+1 unknowns without n+1 independent equations. Since we need to determinen
coefficients plus a constant (intercept), n+1 runs are dways required at aminimum. The
cases highlighted in gray are perfectly efficient or saturated. We are not doing any extra
runs than are absolutely required. 1f one looks one row past a saturated row, the
fractionated two level factorial designs are significantly less efficient. Plackett-Burman
designs help fill the increasing void of inefficiency for 11, 19, 23 and 27 factors (12, 20, 24
and 28 run designs respectively) by providing designs that are saturated. This can result in
asignificant saving of effort. For example, for 11 factors the Plackett-Burman design is
saturated and requires 12 runs whereas the Resolution 3 two level fractional factorial
design requires 16 runs (33% more). However, nothing in lifeisfree. The Plackett-
Burman design has aprice to pay. It hasavery complicated alias structure. Main effects
are not aliased with each other but all main effects are aliased with al two way

interactions. This can make for a situation which makes the designs difficult to interpret

properly.
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Table 6-11: Main design for a Resolution 3 two level fractional factorial design

Number of Factors |  Number of n+1
(n) Runs
2 4 3
3 4 4
4 8 5
5 8 6
6 8 7
7 8 8
8 16 9
9 16 10
10 16 11
11 16 12
12 16 13
13 16 14
14 16 15
15 16 16
16 32 17

Consider the experimenta design below where we have generated data with the Simulate

Data menu option with the expression Resp_1 = 6 + 1*Noise + 10*a*b.

Table 6-12: Experiments sheet output for design in Table 6-11 (1)

Plackett-Burman Design, Resolution 3

8 Factors

2 Centerpoints

Linear Moddl with 9 terms

Response = b0 + b1*a+ b2*b + b3*c + b4*d + b5*e + b6*f + b7*g + b8*h
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Table 6-13: Experiments sheet output for design in Table 6-11 (1), design table

Exp#|la|b|c|d|e|f]|g]|h|Resp_1

1 (1(|-1/1{-1|-1|-1]1|1(|-3.9051

1{1)-1{1|-1|-1|-1|1|1749

-111(1|-111(-1|-1|-1(-2.8844

1/-1)1(1|-111(-1|-1(-4.3799

15.902

1]1)1(-11|1(-1|1|15.034

-111(1(1|-1{1|1|-1{-4.5596

-11-1(1|1|1(-1|1|1|16476

O 0] N| Oof o ] W[ N
=
=
1
=
=
=
1
=
=
1
=

-1]-1(-1|{1|1|1|-1|1|16.506

10 (1|-1|-1(-1|{1|1|1|-1|-6.0701
11 (-1} 1|-1({-1|-1|1|1|1|-3.0353
12 (-1|-1|-1{-1|-1|-1|-1|-1|17.719
13 |0|0|0|0|0|0O|0O|O0O|6.6746
14 |0|0|0O|O|0O|0O|O|0O| 496

A preliminary AutoFit with the default settings first yields no significant model terms.
Increasing the forward step significance to 0.2 yields the model below. However, the
coefficient of variation is poor. Itisclear that the convoluted aias structure is making a
number of linear terms seem important. This problem of an inability to detect interaction
terms without concomitant linear terms is not unique to Plackett-Burman designs. It is
common to all screening designs near saturation (the same problem would be encountered
if we used aresolution 3 fractional two level factorial design). If we used aresolution 4
design, we would not find any model terms to be significant. The message that should be
received isthat if oneis concerned that two factors may only be present as an interaction
(e.g. areaction rate) a higher resolution screening designisin order. For this particular
case, actually aresolution 5 screening design will catch the & b interaction term right off

from the start. However, thisrequires 64 runs and is not an attractive course of action.
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Normally, nobody wants to run a screening experiment that far from saturation. At this

point the reader may feel that these experimental design techniques are not so helpful.

Multiple Regression
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Select Tern [3 Total) Current Model [5 Termsz] Fegress i
a =2 j f _‘_| Dutlier... &l Transtarms
b ]
- h Graphs *Forward: I ¥y
: B Make®LS | CritSignit 02 =]
f _] _] " Trans <Back Elim<| L
g = = | [Mone =] ot Signit_ 0.2
kot
Summary Frevious AMOYVA - 14 Tatal Data Paints ¢<Back<< I Help | Frint I E it |
AL ks Shtres 55 5% Ms F Foignt |
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Standard Erar 7897 Rexi
PRESS 18996 ezidual 4389471 39 BZ2.36538 a
T b LOF Error 497 4771 38 [100] 171.08816 4834679 0110304 7
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: Pure Erar 1.46336R (]} 1.46996R 1
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L 12867 Resp 1= b0+ b1* + b2*g + b3*h + bd*c + b5™d
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q 3723 2.280 -1.633 014 1.000000
h 3670 2280 1.566 0156 1.000000
c -3.851 2.280 -1.5E2 0187 1.000000
d 333 2280 1.483 0176 1.000000

Figure 6-9: Multiple Regression Main Dialog

However, something we should point out at this juncture is that often, terms not in the
response regression model for a design can be estimated. In truth, in a saturated design,
there are enough degrees of freedom to simultaneously evaluate al coefficientsin the
response regression model. When one has trouble finding any significant termsin the
response regression model, we can often investigate higher order and interaction terms not
present in the response regression model. This benefit is a direct consequence of
following good experimental design form by using replicated centerpoints. We may run
out of degrees of freedom if we add too many terms but the software will let us know. In

this case there are 28 two way interaction terms. Obviously we can not simultaneously

112



estimate all 28 as we have only 12 runsin the basic Plackett-Burman design. However,

we may evaluate them one at a time with a stepwise regression routine.

How can we easily do this? By using Essential Regression to analyze the design directly.
We can do this by opening ER22.xla. If the Regress menu is not visible strike Ctrl-m (mis
for menu). Positioning the cursor at the top of the “a’ or first factor column one should
click the Regress Menu and choose Multiple Regression. In the first dialog, select an
linear + interaction model, factors a-h and Resp_1 asthe response. A single forward
selection step will immediately show the extreme importance of the a* b interaction.
However, the terms g*h, ¢*h and b*d will also show up as significant viaforward
selection. However, since they improve the overall fit so very marginally we might

correctly assume they are of very minor importance.

If one performs the same screening experiment with aresolution 4 two level fractional
factoria design (this requires 16 runsin the main design vs. 12 for the Plackett-Burman)
no terms are significant. Since this design has the same response regression model as the
previous Plackett-Burman design and a cleaner alias structure (linear terms are aliased
with three way interactions only) we can be more confident that no linear terms are
important. Going on and fitting an interactions model we find that the a*b interaction is
very important on the first forward selection step. Thisisabit of afluke aswe can
ascertain from either the alias structure or another forward selection step. The regression
crashes when evaluating a model with a*b and c*g, or @b and d*h or a*b and e*h. This
is because they are aliased together and cause a singularity in the main regression routine.
In fact, if we run the regression four times with only one of these terms we get the same
result. The clean dias structure gives one no basis for preferring one interaction term over
the other. In contrast, the Plackett-Burman design clearly shows the a*b interaction to be
more significant if one runs the regression with only one of the potentially important
interaction terms. In general, estimating terms not in the response model equation is not
desirable since the design is not orthogonal with respect to the new model. We will

discuss this further in the next section.
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Plackett-Burman designs are good resolution 3 designs. However, if amain effect shows
up asimportant it is not possible to know which specific interaction terms it is diased with
(it isaliased with dl of them). In this case study this was not an issue. A two level
fractional factorial design does not have this problem. For this reason we usually
recommend staying away from Plackett-Burman designs unless the cost penalty of

experimentation is very high.

6.3 Orthogonality and Rotatability

Full and two level fractional factorial designs are said to be first order orthogonal
designs. That meansthat if oneis using these designsto fit afirst order model of the

following form
Yoo = Do + X, + b, X, +...4 b, X, + error Eq. 6-6

for an n run design we have

év.u €l Xy Xp ... X; 08,0 éerroru

it 8 B0 &

g)’zg_él X21 X22 X2|l:élu éerrorzl:l Eq 67
&-q 6. xzUe..u €& ... U '

ay 3 € ua é a

@yng el an Xn2 Xni Aull’:l é’arrorno

which can be expressed in matrix form as
y = Xb + error Eqg. 6-8

For adesign to be orthogonal the matrix multiplication (X'X) must yield the identity
matrix. The advantage using an orthogonal design for determining the coefficientsin 6-6
isthat the variance of the coefficients is minimized (precision is maximized) over any other
non-orthogonal design. It turnsout that all two level full and fractional factorial designs
with resolution greater than or equal to 3 with standardized factor coding (+ 1 factor
levels) are orthogonal for alinear model. Similarly, resolution 5 or greater two level

fractiona factorial designs are orthogonal for an interactions model. It should now be
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clear to the reader that the EED software always gives the response regression model for

which a chosen screening design is orthogonal.

While orthogonality leads to a minimization of coefficient variance, there is another
variance that is important when considering experimental designs. It is the variance of the
prediction of the response or prediction variance. Of course we would like to predict
the response at any point in the factor design space with equal or uniform confidence
intervals but thisis not possible. With some reflection it may be more obvious that we can
predict with more confidence in areas of the factor space where we have measured datain
contrast to regions where we are extrapolating and interpolating. Since uniform
prediction variance is not possible the next best condition is where the variance of the
prediction is symmetric about the center of the factor space. This means contours of
constant variance form concentric rings about the center of the factor space. Designs
which meet this criteria of equal precision of prediction in al directions are called
rotatable. All two leve full and fractional factorial designs with resolution greater than or
egual to three with standardized factor coding (+/- 1 factor levels) are rotatable.

Since dl two level full and fractional factorial designs are both orthogonal and rotatable
this makes them very sound designs from atheoretical viewpoint. Adding centerpoints to
these designs as we recommend does not cause the designs to become non-orthogonal .
Centerpoints do not affect the estimates of any of the coefficients. However, they do
change the estimate of the constant and they do affect the variance of the prediction.
However, these two level full and fractional factorial designs with added centerpoints
remain rotatable. Clearly, we know the value of the response more precisely if we
measure the centerpoint 10 times (by adding centerpoints to the design) compared to
measuring no centerpoints. We remain strong advocates of using replicated centerpoints

in al experimental designs.
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6.4 Response Surface Modeling (RSM) Designs

In contrast to screening designs the objective of RSM designsis to identify the detailed
dependence of different factors on aresponse. In this case, oneisfairly certain that all
factors are important and a full quadratic model is the response regression model. For

example for two factors the response regression model is
Response = b, + b, x, + b,x, +b;x,x, + b,x? +byx3 + error Eqg. 6-9

In all the RSM designs we will present there is no aiasing between the terms of the full
quadratic response model. Aliasing with higher order terms may well be present. In order
for one to properly access a quadratic term, a minimum of three levels of each factor is
required. At this point the reader may think we are heading in the direction of describing
three level full and fractional factorial designs. We are not. All the designs which we will
describe and that are fully implemented in the EED software have the three level factorial
designs solidly beat from a statistical viewpoint. They are more efficient (require fewer
experiments) and have better predictive properties. They are rotatable or nearly rotatable

whereas three level factorial designs are not.

Thefirst class of designs we will cover are Central Composite Designs (CCD). We will
discuss three flavors of this design (inscribed, circumscribed and face-centered). One
other class of RSM designs we think merits attention is the Box-Behnken designs. They

will follow the CCD designs.

6.4.1 Inscribed Central Composite Designs

Rather than starting with along theoretical discussion let us start with using EED to make
an inscribed CCD design for two factors.
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Figure 6-10: EED Main Dialog

Leaving the minimum and maximum levels for each factor at -1 and 1 and naming the first

factor a and the second b gives the following output:

Table 6-14: Output for inscribed CCD design for two factors

Centra Composite Design

2 Factors

4 Centerpoints
Quadratic Model with 6 terms
Response = b0 + b1*a+ b2*b + b3*a*a + b4*b*b + b5*a*b
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Table 6-15: Inscribed CCD design for two factors with four centerpoints

Exp#| a b Resp_1
1 -1 -1

O 00| N| O o1 Al WO DN
1
=
~
H
N
o

1414 O

0 |-1414

0 1414
0 0
10 0 0
11 0 0
12 0 0

The diasing information is "Main effects and two way interactions are not aliased with

each other but may be aliased with three way and higher interactions’.

Looking at the response regression model we can see that quadratic terms are present in
contrast to a screening design. The experiments look somewhat familiar. The first four
runs are the same as a Two level full factorial design for two factors. The last four runs
are replicated centerpoints. The only new feature for this case isthe runs 5-8. They are

called axia or star points and are illustrated in red in Figure 6-11.

118



1.

l

Figure 6-11: Graphical representation of inscribed CCD design for two factors
Let uslook at using another inscribed CCD design for three factors:

Table 6-16: inscribed CCD design for three factors

Exp# a b c |Resp_
1
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1
9 |-1682] O 0
10 |1.682| O 0
11 | 0 |[-1682 O
12 | 0 |1682]| O
13 0 0 [-1.682
14 | 0 0 |1.682
15| 0 0 0
16 | O 0 0
17 | O 0 0
18 | O 0 0
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Graphically the axia points may be represented as shown.

Figure 6-12: Graphical representation of inscribed CCD design for three factors

The pattern that emerges is the one which does describe the inscribed CCD design for n
factors.

1. A man Two leve full factorial design, or two level fractiona factorial design
of resolution 5 or higher. A total of F runsisrequired for this factorial portion.

2. Axid or start points along the factor axes beyond the minimum and maximum
values of the main Two leve full factoria design

3. Replicated centerpoints.

The reader may be attuned to a practical implication of the first point. It is often possible
to use most or al of a2 level screening design in aRSM design.  Suppose we screen on 8
factors and find out three are important. Often we can use many of the runs from the
fractionated screening 2 level factorial design. This reusing (or recycling to use a nineties
term) is the ultimate elegance in the practice of sequential designed experiments, resulting
in true reductions in the number of runsrequired. Intuitively one might expect savings,

however the magnitude may be surprising. Suppose we have a process with 11 potentially
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important factors of which four are important. 1f we wanted to estimate a full quadratic
mode for al eleven factors, we could go straight to an inscribed CCD. Thiswould
require a staggering 2075 runs (2048 for the full factorial, 22 axial runsand 5
centerpoints). Another approach would be to screen with aresolution 4 fractional two
level factorial design which would require 35 runs (32 runs for the main design and 3
centerpoints). Thiswould be followed by an inscribed CCD of 28 runs. This sequential
experimentation has a maximum of 63 runs. The exact same information would be
obtained at the end of the two different experiments. If the experimenter iswilling to
reuse centerpoints and other runs from the screening design this number can be reduced
still more. We heartily endorse the concept of sequentia experimentation as both a
practical and theoretically sound approach to experimental design. It is another reason to
userelatively clean two level fractional factoria screening designs with replicated

centerpoints.

The reader may be wondering how the number of centerpoints are chosen as well as the
placement of the axial points. It isobvious that the axia points are not a fixed distance
from the origen from the two previous examples. It isimportant to remember in response
surface modeling we usually are looking for some optimum or will try to predict values
throughout the factor space. Since we know beforehand that the factors are important,
the chances of afactor not appearing in the final response regression model is smal. We
will want to make predictions throughout the factor space. This places a premium on
minimizing the variance of prediction and maximizing its symmetry (rotatability). The

axial distance ais chosen to assure that the designs are rotatable. Calculating a from

a=4F Eq. 6-10

assures that the inscribed CCD design is rotatable. The number of added centerpoints has
no impact on the rotatability of the design or the value of a. However, for reducing the

prediction variance, especialy in the center of the factor space, 3-5 centerpoints are
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recommended. The EED software defaults to four centerpoints and allows the user to

sdect amaximum of five or a minimum of three.

6.4.2 Circumscribed Central Composite Designs

However, there are cases when we do not want to have the maximum values we specify in
the minimum and maximum va ues of the factors multiplied by a to get the axia points.
Instead we wish the minimum and maximum values we specify to be the values of the star
points. The minimum and maximum values for the factorial part of the design needsto be
scaled to an appropriate level. Clearly, if we know that we have absolute upper limits on
certain factors we might want to specify them as the axia points. Table 6-17 below shows
a EED output for a circumscribed central composite design, which does this desired

scaling, for 3 factors.

The circumscribed central composite design, is not really different than the inscribed
central composite design, it just has its factor levels scaled such that the axial points are to
the user specified minimum and maximum level. Therefore, it has the same number of
total runs, same number of centerpoints and same axial distance value aisused. In order
to see this one must divide 1/0.595 = 1.682 as it was in the previous inscribed case for

three factors.
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Table 6-17: EED output for a circumscribed central composite design for 3 factors

Exp#| a b c Resp_1
1 |-0.595|-0.595|-0.595
2 | 0.595 |-0.595 |-0.595
3 |-0.595| 0.595 [-0.595
4 | 0.595 | 0.595 |-0.595
5 [-0.595]|-0.595 | 0.595
6 | 0.595 |-0.595|0.595
7 |-0.595| 0.595 | 0.595
8 | 0.595 | 0.595 | 0.595
9 -1 0 0
10 1 0 0
11 0 -1 0
12 0 1 0
13 0 0 -1
14 0 0 1
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0

One has to remember that if he ultimately thinks he will be performing a CCD, the axial
points might present a problem. Otherwise, the factorial points from a screening design
may not be reusable in the final CCM. Planning and forethought yield savingsin effort
and experimentation. |If there are no problems going beyond the limits of the screening
factoria experiment, then inscribed central composite designs really lend themselves to

sequential design as described in the previous section. Otherwise, the circumscribed
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designs described here might be necessary. Consequently, the screening design upper and

lower limits may have to be narrowed or more experiments performed.

6.4.3 Face Centered Central Composite Designs

Thisisavery specia case of the central composite where the axial distance ais the same
as the minimum and maximum values of the factorial portion of the design. The axial
distance vaue a= 1. For three factors, the axia points are on the centers of a cubic and
hence the name face centered CCD. In general, thisis not a desirable thing to do aswe
have emphasized that the value of a determines whether or not the CCD isrotatable. In
fact, the face centered central composite design is not rotatable. For three factors the
EED output is shown in Table 6-18.

In this case the number of centerpointsisreducedto 2. Thisisall that isrequired to get a
reasonably even variance of prediction throughout the design space. Wheniisit
appropriate to apply these designs? When the factors have clear boundaries that can not
be exceeded. For instance, percent conversion of araw material or Shore D hardness
which haveintrinsic limits of 0 and 100. Factors that have measurement scales that
intrinsically have fixed upper and lower limits. In these cases, rotatability is not a major

concern.
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Table 6-18: EED output for 3-factor-face centered CCD

Exp# a|b| c |Resp_

1

1 |-1}{-1|-1
2 [1]-1/1
3 [-1|1(-1
4 1111

-11-1( 1
6 [1]|-1|1
7 (-1]1|1
8 [1]1(1
9 [-1{0]0
10 (1(0]|O
11 {0(-1|0
12 {010
13 (0(0|-1
14 (001
15 {0(0|O0
16 ({0({0|O0

6.4.4 Box-Behnken Designs

These are an unusual class of 3 level designs appropriate for fitting second order response
models. They are rotatable or nearly rotatable depending on the number of factors.

Below is a Box-Behnken design for 3 factors.
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Table 6-19: Box-Behnken design for 3 factors

Exp# a|b| c |Resp_
1

1 |-1]-1|0

2 [1(-1/0

3 |-1{1|0

4 [(1(1]0

5 |-1/0(-1

6 [1(0]|-1

7 |-1{0]1

8 |1|]0(1

9 |0|-1|1

10 (0] 1|-1

11 {0 |-1{1

12 {011

13 |0|0|0

14 |0|0]|0

15 |0|0]|0

16 |0|0|O0

The design is shown graphically in Figure 6-13. The features which immediately jump out
when inspecting these designsis that they are "corner free". No runs are done at the
design corners. There are no experiments where at least one of the factorsisnot at its
midpoint. In contrast, to the inscribed and circumscribed central composite designs, there
are no star or axial points so each factor appears at only three (not five) levels. At first
glance, these may not seem like potential candidates for sequential experimentation.
However, closer inspection reveals that they are balanced blocks within the design which

does make them candidates for sequentia experimentation. In this case we can see, three
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blocks of 2 factor 2 level factorial designs. In fact all of the Box-Behnken designs are
balanced block designs. Since the factors not being studied in a particular block are
always set at there midpoint, corners never appear. One should especially consider using
these designs when one is not interested in predicting behavior in the corners of the design

space.

Figure 6-13: Graphical representation of Box-Behnken design

6.5 Summary

The EED software has limits on the number of factors for each type of experimenta
design. They are summarized in Table 6-20 below. Obvioudy for an arbitrary number of
factors only certain designs are available. For more than 7 factors only screening designs
are available. The software handles al of this automatically. Choices that are not
supported cannot be selected as their option buttons become "grayed out”. Obvioudly, the
EED software was designed so that an experiment will not exceed 64 runs (without

centerpoints). Thisis ahefty and realistic number.

The software will also help the user pick the design with the highest resolution possible for
agiven number of experiments. For example for 3 factors, resolution 4 and resolution 5
two level fractiona factorial designs both require 8 runs. The software automatically

selects the highest possible resolution design and makes the lower resolution unavailable.
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In other words, the user is always guided into obtaining the maximum amount of

information for the number of experiments performed.

Table 6-20: Number of factors and runs for each type of experimental design

Experimental Design Number of Number of

Factors Runs

Full 2 Level Factorial 2-6 4-64

Fractiona Factorial 2-8 4-64
(Resolution 5)

Fractiona Factorial 2-11 4-32
(Resolution 4)

Fractional Factorial 2-31 4-32
(Resolution 3)

P ackett-Burman 2-27 12-28

Central Composite Designs 2-6 8-44

Box-Behnken 3-7 12-56

Table 6-21: Possible and recommended number of centerpoints

Design EED Number Recommended
Allows (Minimum/Preferred)

Full Factorial 0-5 2,3

Fractional Factoria (All 0-5 2,3

Resolutions)

P ackett-Burman 0-5 2,3

Central Composite 34 4.4

(Circumscribed and Inscribed)

Central Composite Face 2-5 2,3

Centered

Box-Behnken 3-5 4.4
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We would like to re-emphasize and summarize some of the important points made earlier.
Thefirst is that one should aways use some repeated points in an experimental design to
estimate lack-of-fit (LOF). Table 6-21 summarizes the possible and recommended number

of centerpoints for the various designs.

Replicating the centerpoint in two-level fractional factorial designs has advantages because
the LOF test can be interpreted from a curvature point of view. Thiswas shown directly
in section 6.2.1. Replicating other pointsin the design does not afford this judgment of

the presence or absence of curvature in the response regression model.

It is important that the repeated centerpoints represent replicate samples and not merely
repeat measures. A repeated measureisreally just measuring the response of agiven
experiment more than once rather than completely starting over. Consider an experiment
where a spectrometer is measuring some absorbance of a painted panel. Repeated
measures would correspond to multiple measurements made on a single sprayed panel. A
true replicate would start from a separate batch of raw materials, a separate substrate and
another spraying of the substrate. Thistruly captures the variation in the entire coating
process. Repeated measures in this case could be used to determine the variability in the

spectrometer.

Another issue when doing an experiment is the possibility that there is some other bias
floating around that could disturb the analysis of the design. Consider an experiment that
is performed outside. If all the experiments that performs have a high level of factor A are
done in the morning when the ambient temperature is cooler, we can not separate the
effect of ambient temperature and factor A. These two factors are said to be confounded.
If we fedl avariable like ambient temperature isimportant it should be included as a design
factor. But if we do not, we should try to minimize its potentia effect on the analysis
through randomization of the design. The main dialog in EED does have arandomize
checkbox for this very reason. This alows there to be a completely random way of

running the experiments. Therefore, it isunlikely that factor A will be confounded with
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ambient temperature. Furthermore, even if ambient temperature were sightly significant,
it would not interfere with the analysis of the experiment since its effect would be

distributed across the design. 1t would contribute to the lack of fit error.

In closing we would want to point out some of the dangers of using an experimental
design and blindly running an automatic fitting of the response. This often will lead to
terms in the response which may not be important. We recommend that the user manually
use sequentia forward selection and backward elimination steps keeping an eye on the
adjusted R? value. If for agiven forward selection the adjusted R? goes up only very
dightly and the term does not seem to be physically feasible we would tend to go without
that term. One has to remember that, in general, one does not have a great excess of data
in analyzing an experimental design so it isrelatively easy for aterm to seem important by
chance alone. If one had alarge amount of data (>50 points) then this precaution need
not be made. Running the EED/ER package in simulation will demonstrate our point very

strongly.

7. Quick Guide and Tutorial

7.1 Important Reminder

Essential Regression and Essential Experimental Design are compiled Microsoft Excel®
Macros (Add-ins). In other words, Microsoft Excel is needed to run them. They were
developed for Microsoft Excel Versions 5.0c and later. We recommend using Microsoft
Excel 7.0 for Windows 95 or Excel 97 (Version 8.0). It has not been tested for versions
of Excel beyond 97. We cannot guarantee it will work on newer versions. We will try and

upgrade the software if necessary when later versions of Excel arrive.
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7.2 Installation

Essential Experimental Design and Essential Regression come on a3.5”" disk. To install

the software, run setup.exe on the disk.

Insert the disk in your diskette drive. In Windows 3.x, if the disk drive is named drive A,
start the File Manager and activate the file list for drive A. You can either double-click
the setup.exe file in the file list (Windows 3.x) or select File, Run, and then type
“setup.exe”. In Windows 95, you can either double-click the “My computer’ icon, then
do the same with the ““3 %2 Floppy [A:]”" icon and then double-click the *““setup.exe” file,

or you click on the Start button, select Run and type “a:\setup.exe”.

By default, setup.exe will install the program filesto “ C:\eregress’. Y ou can choose a
different destination if you prefer. Setup will aso install a program group “Essential

Regression” in the start menu (Windows 95) or the Program Manager (Windows 3.x).

Note: Setup.exe will not install the datafile er_test.xls which is also on the program
diskette. Please copy this file manually from the diskette to the directory in which you
installed Essential Regression (C:\eregress by default).

7.3 Loading Essential Regression into MS Excel

From within MS Excel

In Excel, with at least one empty workbook open, select the File,Open menu. Locate
ER22.xlain c:\eregress (or the directory you installed the program into) and open it. This
will start the Add-In and, after an introductory screen, add a new Regress menu to the
Excel main menu bar between the File and View menus.

From outside MS Excel

In Windows 95, select Start = Programs = Essential Regression - Essential
Regression. In Windows 3.x, double-click the Essential Regression Icon in the Essential

Regression Program Group.
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Like any other Excel file, Essential Regression (ER22.xla) can also be opened directly in
the File Manager (Windows 3.x) or Explorer (Windows 95) .

MS Excel will start up (or ssimply become the active application if it was started up
before), and, after the introductory screens, a new Regress menu will be added to the

Excal main menu bar between the File and View menus.

7.4 Performing a Regression Analysis using the ER_Test Data

Note: Paragraphs in italics are meant only to point to additional features of Essential
Regression. You are not supposed to execute them. However, if you do so, your screen
could look different from what is given in the text and you should go back to the point

before you ““took the detour™.

Open the Excel workbook “er_test.xIS” which you should find in the Essential Regression
program directory (provided you copied it from the program diskette, see chapter
“Installation”). On the “data’ worksheet, this workbook contains a small data set. The
regressor variables X1 and X2 and the response, Y, are arranged in columns, the
observations are arranged in rows. Any data table to be analyzed with Essential
Regression should be arranged like this. The “A” column contains the index number of
each observation. In columns “B” and “C”, you'll find the effects or x variables. Column

“D” contains the response or Y variable.
Cell “B1” ishighlighted in red. It is the leftmost cell in the header row of the range with
useful data (not counting the index column). We call it the “pivot cell” of the datatable.

Please sdlect this cdll.

Note: It is important to select the pivot cell in a data table before launching

Essential Regression!
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In the Regress menu, select Multiple Regression. Thiswill activate the Multiple

Regression Input Dialog.

To select the response variable, click the “down arrow” in the Response (Y) drop-down
list box. The list box should show the variables. Select the“Y” variable as the response.

Now focus on the two “ Select Factors” windows in the dialog box. To select factors or
input variables, add “X1” and “X2" from the list in the left window to the right window by
using the “>" button between the windows. Do not add the response or y variable to the
right window. If this happens, you can remove it using the “<” button.

Go to the “Type of Regression” drop-down box and select “Full Quadratic” from the list.

Do not change the remaining options. The dialog box should now look like this:

Multiple Regression Input I
Responze [1] Select Factars
' - 1 - kA =
l —! R “‘J ‘Ll e _J
Type of Rearezsion e ]
Error ;l
RN |
¥ Transform
iNDne __:j ;I ;i

V¥ Regress Intercept?

Coefficientz Confidence Intervalz
’V Help wrMents

B 2 "ILI Exit

Click * >>Next>>". This opens the “Multiple Regression” Main Dialog.

In the upper left quadrant of the “Multiple Regression” Main Dialog you'll find the “ Select
Term” window with alist of al possible termsin the model based on the “Full quadratic”
model selected in the previous dialog: linear, squared, and interaction terms. Note that
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Essential Regression creates this list for you automatically. Using the arrow buttons,

model terms can be added or deleted from the model after selecting them in the

corresponding window. The terms currently in the model are listed in the “ Current Model”

Window. Note that any subset of the regression model selected in the previous dialog

under “Type of Regression” can be created.

Select “X1” inthe*Select Term” window and click the “>" button. Repeat this with

“X2". This creates alinear model with these two terms. To perform the regression, click

the “Regress’ button to the right of the “Current Model” window. This executes the

regression analysis and the dialog should now ook like this:

Multiple Rearession
— Impuk — AukoRegress —
Select Term (5 Tokal) Current Madel (2 Terms)
AukaFit I Fit &l
Outlier... all Transforms
®1*ad
K1¥uz {I ﬂphs_ =Forward = | =
e
H2TRE Make LS | | oy signif 0.1 —_—I:
Y Trans
<Back. Eliminatic-n<| < |
| nere =1t s o.0s ii
— Cukpuk
Summary Previous AMOYA - 49 Tokal Data Points
Rz 0,954 Saurce 55 559, M5 F F Signif df <Back<
R2 adjusted 0.584 Regression | 10116.00 | o8 SoSg.001 | 1431968 | 3.75ledz | 2
Standard Error | 1,879 Residual 162.4813 | 2 3.532203 46 | Help
FRESS 183.63 LoFEror | 1053983 | 1 (e5) 4.053801 | 1420130 | o212z | 26 :
R2 Prediction 962 Pure Error | S7.08250 | 1 (35 2.854125 20 Print
Durbintiéatsond | 1.874 Total 0z7E.48 | 100 48
Autocorrelation 0.03102
Collinearity 0,975
oy 3,271 Y= b0+ b1 + b272
Precision Index 120,71
Term Coefficient Std Error k Skatiskic Significance YIF
Constant [ 2579 0,653 41.00 7.276e-35
%1 3,990 009319 42,61 1.03%e-35 1025300
wr 20,60 0,875 24,949 2,107e-25 1025300

The “Multiple Regression” Main Dialog displays most of the results needed to evaluate a

regression model instantly. In the “Output” area, the “Summary”, “ANOVA”, and

regression coefficients or “Term” window show the parameters needed to assess the
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quality of the selected model. For example, you can see that the coefficient of
determination R? for the linear model is .984, the adjusted R?is .984, and the so-called R
for prediction, estimating the prediction accuracy of the model, is .982. In the ANOVA

table, the F-value is high (1432), and the F-significance is very low (3.75e-42), indicating a

highly significant regression model.

What if you want to evaluate other models based on the selected variables “X 1" and

“X2"?How does the full quadratic model compare to the linear model ?

Select the first term in the “ Select term” window and click the “>" button repeatedly until

all the 5 possible terms are in the model. Note that the “Output” areais cleared when

doing that. Now click on “Regress’ again. The dialog should look like this:

Multiple Regression

— Impuk
Select Term (5 Tokal)

Current Madel (S Terms)

¥l

X2
K1*EL
K1¥uz

<

K1*EL
K1*uz
HE¥RZ

— AukoRegress —
AukaFit Fit Al
Outligt. .. all Transfarms
ﬂnhs_ =Forward> | ==
Make LS Crit Signif 0.1 —_—I:
¥ Trans

<Eack Elinmination < | e |

| wone =] e Signif

oo =

— Cukpuk

Summary Previous AMOYA - 49 Tokal Data Points
Rz 0,959 Saurce 55 559, M5 F F Signif df <Back<
RZ adjusted 0367 Regression | 1016257 | 99 2032515 | 754.0187 | L.064e40 | 5
Standard Error | 1.642 Residual 1159098 | 1 2.695575 43 Help
PRESS 148,06 LOF Error | 58.82726 1 (513 2857707 | 0.898144 | o.eozavl | 23
Rz Prediction 0.956 Pure Error | 57.08250 1 (493 2.654125 20 Print
Durbintiéatsond | 2.036 Total 10z7E.48 | 100 48
Autocorrelation -0.03534 i
Collinearity 0.000250
oy 2,814 ¥ = b0+ h17H1 + B27H2 + h3TK17K1 + bd™X1782 + he52m2
Precision Index 86.75

Term Coefficient Std Error k Skatiskic Significance YIF
Canstant 25,57 1.085 23.56 3.7968-26
%1 5,304 0,357 14,67 1.476e-16 19.68504
%z 17.29 3,208 5,390 2,796e-05 20,33866
w1*L 0,145 0.03532 -4,101 0,000179 16,5199
n1*2 0,07454 0.281 0,265 0,792 10,93036
HERLE 2,747 3,168 0,861 0,394 21.06522

These are the results for the full quadratic model. Y ou can see that all three R? parameters

have improved. This can be checked easily by clicking the “Previous’ button. The

“Previous model summary” is displayed:

135



Previous Model Summary i

Ra 0.934

F2adi 0984

Std Error 1.879

PRESS 18365
F2Fred 0982
Durbin-wiat d - 1.879
Autocarrelation 0.03102
Collineanty 0975

i 3.221

Preciz Index 12071

= B0+ BT + b2

However, alook at the “ANOVA” and coefficients window shows that the F-value has
decreased (from 1432 to 754), and, more obvioudly, some of the model terms have alow
significance, i.e., the probability output for the t-statistic in the coefficients window shows
numbers >0.1 (remember: the smaller the significance number in the table, the more

significant the term).

Apparently, our model contains “unnecessary” terms. How can we find out fast what is the
“best” model among the possible combinations of linear, quadratic, and interaction terms?
In Essential Regression, we have the possibility to perform forward and backward

stepwise regression based on a threshold significance which can be adjusted by the user.

You’ll find buttons for forward selection or backward elimination of model terms in the
“AutoRegress’™ area in the upper right corner of the dialog. For example, using the full
guadratic model with 5 terms, we could use the ““<<Back Elim<<”’ button now to

remove insignificant terms from the model in a stepwise fashion.

Another possibility is the use of the ““Fit All”” Button (can be used with no model terms
selected in the Main Dialog) to get a list of all possible models (31) sorted by decreasing
R? and R adjusted. If you do that, you’ll get another worksheet with a list of all possible

subsets of our 5 term quadratic model.
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However, one of the exceptional features of Essential Regression is the “AutoFit”, i.e., the
automatic selection of the “best” model using repeated forward and backward stepwise

regression until no further improvement can be detected.

Using the dialog as shown above as a starting point, press the “ AutoFit” button in the
“AutoRegress’ area (upper left corner). Note that the progressis indicated in the Excel

status bar at the bottom of the screen. After afew seconds, you should get the following

message:

Autofit Meszage

AutoFit Converged

Click “OK”, and the dialog should look like this:
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Multiple Regression
— Impuk — AukoRegress —
Select Term (5 Tokal) Current Madel (3 Terms)
i AukoFiE Fit All
%1 ;
®Z I_ %2 Outler. . All Transfarms
X1*81 K1*d1
< I ﬂnhs_ =Forward> | £
e
H2RZ Make LS | | oy signif 0.1 i—l
Y Trans
<Eack Elinmination < | e |
| nere = et signe 0.1 ii
— Cukpuk
Summary Previous I AMOYA - 49 Tokal Data Points
Rz 0,955 Saurce 55 559, M5 F F Signif df <Back<
R2 adjusted 0.588 Regression | 10159.85 | o9 3386.616 | 1284507 | 1.363e43 | 3
Standard Error | 1.624 Residual 1186346 | 1 2.636325 45 Help
PRESS 138.70 LOF Error | 6155212 1 (52} 2462085 | 0.862641 | D.e40ma | 25 :
Rz Prediction 0.957 Pure Error | 57.08250 1 (483 2.654125 20 Print
Durbintwatson d 2,062 Takal 10275.48 100 45 r——
Autocorrelation -0.04545
Collinearity 0.05337
oy 2,783 Y= bl + b1%1 + b2752 + hE=*K1
Precision Index 105.46
Term Coefficient Std Error k Skatiskic Significance YIF
Zanskant 24.89 0.732 34.00 9.6858e-34
“l 5.340 0,341 15.67 7.042e-20 15837279
we 20.43 0.714 28.64 1.571e-30 1.028682
K1%KL -0.141 0.03470 -4,073 0.000183 15.27476

The sdlected moddl contains the terms “X1”, “X2", “X1*X1", and the constant term or

intercept. Note that this model does not generally have higher R? terms than the full

quadratic model (the R? for prediction is only slightly higher), but the F-value is higher

(1284) (or, meaning the same, the “F-Significance” value is lower), indicating a more

significant model. All the model terms are highly significant, indicated by the very low

“Significance” values in the coefficients window.

If you execute the “Fit All”” option described further above, you’ll see that the model the

“AutoFit” came up with is actually not the best model available in terms of the R*-

values. However, the 3 *“*better”” models all have insignificant, i.e., redundant terms!

The “Multiple Regression” dialog allows to perform model adequacy checking. The

“outlier” button produces a list showing outliers, leverage, and influential casesin our
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database. The “Graph” button opens another dialog which shows a variety of scatter plots

useful for resdua analysis.

For example, click the “Graph” button and then “Add Trendline” in the graph dialog. It
should look like this:

j Model Adequacy Graphs [

o= b0+ b1 + h2%2 + B

<= |Graph 1 of 11 = | | Remove Trendling | Exit |
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This graph shows aplot of the y-values predicted by the model (“Y predicted’) vs. the
observed “Y” values and the corresponding linear trend line. As you can see, a variety of

plotsis available which can be selected with the arrow buttons.

So far we only could see the results of the regression analysis in dialog boxes. Now, we
will create a permanent Excel output worksheet. Exit the graph dialog shown above and
pressthe “Make XLS’ button in the main dialog. After afew seconds, the following
message should appear. Click “OK” and then “Exit” in the main dialog.
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Workzheet Created i

Your worksheet has been created.
Y'ou may now click Ewit for further analyziz.
The waorkboaok, must be gaved with the File-5ave

command before leaving Excel if you want to
permanently zave the regression.

After exiting the main dialog, the output sheet (“data 1) should be the active window.
Note the buttons on the left hand side in the first column. By pressing these buttons, you

can perform a series of useful actions:

-Reregress the model (goes back to the Main Dialog),

-Delete the output sheet if needed,

-Predict new responses based on new data points,

-see scatter plots similar to the ones described above for residual analysis
(“Graph”),

-evaluate a data table including residual analysis for each data point,

-go to aregression coefficients table like the one in the main dialog,

-“optimize”, i.e., find a set of inputs which gives a specific output,

-check the confidence ranges for the regression in a scatter plot,

-view the outlier table,

-print selected output ranges from the sheet,

-look at the correlation matrix (R matrix).

Finaly, the “surface” button allows you to see a 3D surface of you regression model

eguation, provided there is more than one variable in your model.

In our example, the equation we arrived at after using “ AutoFit” contained “X1” and “X2"
(as the squared term). On the output Excel sheet you just created, press the “ Surfaces’
button. In the next message box, click “OK”:
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Contour Plot Input

Pleaze Select First Coutour Plot Y ariable

The next dialog shows a list of the available variablesto plot. In our case, thereis only one

3D plot possible: the reponse (“Y™) vs. “X1” and “X2".

Pick Contour FPlot Terms I

v 1

- Exit |

Select “X1” and click the “Pick” button. In the next message box, click “OK”.

Contour Plot Input

Fleaze Select a Different Second Coutour Plat VY ariable

Select “X2”, and click the “Pick” button again. Essential Regression creates the surface

plot, and you should see the following graph on your worksheet:
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@ 80.0-100.0
E 60.0-80.0
@ 40.0-60.0
O 20.0-40.0
H 0.0-20.0

If you click the “Contour” button above the graph, you get the 2D representation of the
surface, a contour plot. The “Contour” button changesto a*“3d” button. Pressing it brings

back a surface plot.

& 80.0-100.0
E 60.0-80.0
@ 40.0-60.0
O 20.0-40.0
H 0.0-20.0

Y ou can rotate the graphs by using the “<” and “>” keys. Also, you can increase or
decrease the number of levels by clicking “+” or “-*, respectively. In our example, we have

used the “+” key afew times to bring out more colors.

If your model has more than 2 variables, you will find another button above the graph
area with the caption “movie”. The “movie” feature allows you to incrementally change

the value of one variable while plotting the response vs. two other variables. If you loop
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through these changes, the effect resembles an animation or movie with the surface

changing according to the value of the changed variable.

Pressing the “Back” button at any time takes you back to the starting point, i.e., the upper
left corner of the worksheet.

Make sure that you save the Excel worksheet before closing Excdl if you wish to keep the
output. Basically, this sheet generated by Essential Regression (ER) is a standard Excel
worksheet linked to ER through the added buttons.

This tutorial is intended to lead you through a relatively simple regression analysis
while emphasizing the features of Essential Regression which allow for a quick
assessment of the model. There are many more features explained in detail in the

previous chapters.

7.5 Unloading Essential Regression

In Excel smply select the Regress, Unload menu option this will close Essential

Regression and remove the Regress menu from Excel.
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7.6 Loading Essential Experimental Design into MS Excel

From within MS Excel

In Excel, with at least one empty workbook open, select the File, Open menu. Locate
EED22.xlain c:\eregress (or the directory you installed the program into) and open it.
Thiswill start the Add-in and, after an introductory screen, add a new DOE menu to the

Excal main menu bar between the File and View menus.

From outside MS Excel
In Windows 95, select Start, Programs—> Essential Regression - Essential
Experimental Design. In Windows 3.x, double-click the Essential Experimental Design

Icon in the Essential Regression Program Group.

Like any other Excdl file, Essentia Experimental Design (EED22.xla) can also be opened
directly in the File Manager (Windows 3.x) or Explorer (Windows 95) .

MS Excel will start up (or smply become the active application if it was started up
before), and, after the introductory screens, anew DOE menu will be added to the Excel

main menu bar between the File and View menus.

7.7 Creating a simple experimental design and analyzing it with
Essential Experimental Design (EED)

We assume EED is loaded and the DOE menu isvisible. First, select the Design An

Experiment option in the DOE menu. This brings up the Design an Experiment Dialog.

We are going to create a circumscribed central composite design (CCD) with 3 factors

and 4 center points to assess curvature and experimental error. Please make the

appropriate selections. The dialog should look like this before you continue:
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Deszign an Expenment I

— Input D ata
Mumber of Factors 3 @ # of Centerpoints: 4 E Mumber of Responzes 1 @
W Al Factors are Quantitative W' Show Aliasing [if applicable) W | Randomize Workzhest

— £ Level Screening

— hany Factars — Higher Besalution
" Fractional Factorial Res 3 4 Runz % Frantitnsl Factars| Hesd 5 Runz
™ Placket - Burman 12 Runz ™ Fractional Factorial Fez 5 5 Runz
™ Full Factarial 5 Runz

— Responze Surface Designs
— Second Order Modelz — Central Compozite Options

% Circumszcribed [Min & Max=5tar Paints]

" Central Composite 14 Runs
e e 13 B ™ Inzcribed [Star Points outside bin & bax |

" Face Centered

Current Design (18 Runs) B |
Central Composite design for 3 Factars

Model is quadratic s i
14 model runs and 4 centerpoints Make DOE |

In the colored section at the bottom, the dialog shows that our design has 18 runs or
experiments (including the center points), and that the underlying model has quadratic

terms.

Press the “Make DOE” button. EED creates the “Aliasing” worksheets giving information
how certain effects are aliased with others, and the Factor Definition Dialog will be

displayed:
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Factor Definition |

Factor Name Urits Law Value High Y alue
F2 " : 8 -
F3 2 1
.- | < | - | El
A | § [
<Back < | ok |

Here, you can set the lows and highs for the design factors. For our purposes, smply
accept -1 and 1 as low and high settings for the design and continue with “OK”. EED will
create the “ Experiments’ worksheet and the following confirmation message will appear.

Simply press“OK” to continue:

E xperimental Design Completed

The Experimentz and &liazing sheetz have been successiully completed

In the “Experiments’ worksheet, you' Il find information about your design and the
underlying model. Let us pretend we would conduct the 18 experiments necessary to
analyze the model. In EED, we can simulate this process. In the DOE menu, select
Simulate Data. Thiswill bring up the Data Simulation Input Dialog. Accept “Resp 1" as
the response name and select the Factors F1, F2, and F3 as the model factors. Further,
let’s assume we have a linear model (you can change the model type in the “ Type of
Model” list box at the bottom of the dialog). The dialog should now look like this:
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Data Simulation Input |

Fesponse [r] Mame iHegp_'I :_I

Select Factors

F1 F1 R
F2 F2 —'i
F3

Type of Model

Linear __V_i Cancel rrMentsr |

Press the “>>Next>>" button. Thiswill bring up the Input Model Coefficients Diaog.
Sdect “F1” (factor 1) in the window listing the “Possible Model Terms’. Then type the
value for the coefficient for factor 1 into the edit box shown below the “Initial
Coefficients’” window. The cursor should be activated in this edit box by default so that,
after selecting “F1”, you should be able to type directly. Enter “5” as the value for the

coefficient.
Repeat these steps for the factors F2 and F3 using “10” and “-15" as coefficients. After

that, enter “10" as avalue for the constant term in the model and |eave the noise standard

deviation at 1. The dialog should then look like this:
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Input Model Coefficients

~Specify Coefficients

Pozsible Model Terms Initial Coefficients

Fi = E =
M

j -] <]
T change a coefficient clhck it and twpe in its new value below
F3 |-15
~Other Info
Constant |'I n
Moize Standard Dewviation |'I

Cancel |

b ake Diata

This concludes the model definition. What we have done isto simulate a linear regression

mode as the basis for our experimental design. Pressthe “Make Data” button, and EED

will calculate “responses’ for each experiment on the “Experiments’ worksheet. Note that

the data table now contains data in the response column.

Let’s pretend we do not know the exact model equation which we just have used to

calculate our data. The next step will be a multiple regression to come up with a model

which describes our data best.

To perform this task, select Analyze Design in the DOE menu (the “ Experiments’

worksheet should be the active sheet when doing this). Thiswill launch Essential

Regression in “EED mode’, and a Multiple Regression Input Dialog different from the

one shown in Chapter 7.4 will come up:
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Multiple Regression Input I

Rezponze 1]
iFI ezp_1 __T_i
# Transform
iN ane ;i
~Coefficientz Confidence Intervals- Help I
= A 3
# 15 saMexts> i

By default, this dialog selects “Resp_1" as the column of the data table containing the
response. Accept the defaults and click “>>Next>>". This will bring up the Multiple
Regression Main Dialog (see Chapter 7.4). At this point, ssimply click the “ AutoFit” button
and have Essential Regression find the best model. The outcome depends on the data you
simulated as described previoudly. The random error or noise term we introduced can lead
to different results as far as the optimized model is concerned. However, the model you
end up with should contain F1, F2, and F3 as highly significant factors and possibly

another, higher order term with less significance.

You could click the “Fit all”” button in the Multiple Regression Main Dialog and find out
which model is the “best”, based on R? and R? adjusted. If you limit the number of
factors to 4, this should not take unreasonably long.

Also, note that you are now in Essential Regression (ER). You can use all the features of

ER including 3D- graphing. Since you have 3 variables, you can use the “movie’ feature

in the surface plot area of the output sheet (described in chapter 7.4).

7.8 Unloading Essential Experimental Design

In Excel smply select the DOE, Unload menu option this will close Essentia

Experimental Design and remove the DOE menu from Excel.
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8. Literature

This book was meant as a supplement to the Essential Regression and Essential
Experimental Design Add-Ins. We put in as much information about Linear Regression
and DOE as we thought was reasonable to enable any user of this software to perform a
meaningful analysis. We are aware that,by doing so, we had to cut corners here and there
and sometimes even leave out topics which, in the eyes of areally serious reader (or a
statistician), should have been discussed.

For people interested in the fundamentals and the mathematical details, we recommend
studying some of the following publications. We, not being statisticians by trade,
necessarily had to distill much of the information presented in these literature references
into this book and, hopefully did not make too many mistakes in doing so. We think
everybody applying statistics on aregular basis should peruse some of the books listed
below:

Douglas C. Montgomery and Elizabeth A. Peck, “Introduction to Linear Regression
Anaysis’, 2" Ed. 1992, John Wiley & Sons, Inc., New York, NY (ISBN 0-471-53387-4).

Raymond H. Myers, Douglas C. Montgomery, “Response Surface Methodol ogy, 1995,
John Wiley & Sons, Inc., New York, NY (ISBN 0-471-58100-3).

Douglas C. Montgomery, “Design and Analysis of Experiments’, 3“ Ed., 1991, John
Wiley & Sons, ew York, NY (ISBN 0-471-52000-4).

Lyman Ott, “An Introduction to Statistical Methods and Data Analysis’, 3 Ed. 1988,
PWS-Kent Publishing Co. Boston, MA (ISBN 0-534-91926-X).

Jay L. Devore, “Probability and Statistics for Engineers and the Sciences’, 3 Ed. 1991,
Brooks/Cole Publishing Co., Pacific Grove, CA (ISBN 0-534-14352-0)
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For readers interested in the details of nonlinear regression analysis.

Douglas M. Bates, Donald G. Watts, Nonlinear Regression Analysis ad its Applications,
John Wiley & Sons, Inc., New York, NY (ISBN 0-471-81643-4).
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