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Preface

Essential Regression and Experimental Design for Chemists and Engineers was

developed as an easy-to-use book with an accompanying software package which allows

non-statisticians to analyze experimental designs and quantitative data using polynomial

and multiple linear regression in a straightforward and understandable manner.  From our

experience as chemists and engineers, these two variations of regression analysis are the

ones used most often to analyze data.  They are the "essential" tools in data analysis.

Recognizing the widespread use of Microsoft Office software, we developed Essential

Regression software as a MS Excel Add-In (compiled Excel Macro).  The user can

work in the familiar and powerful data analysis environment of Excel and does not have to

learn a new statistical software package.  Other benefits from working directly in Excel are

that it trivializes some of the most time consuming steps of regression analysis when

compared to large conventional packages because the entire input and output of the

regression lies within a standard spreadsheet workbook which eliminates the need to learn

a new interface.  They include:

1. setting up data input tables

2. creation, customization and printing of graphs

3. transfer of the regression analysis to other software packages (word

processors, presentation software) for a final report

4. printing, saving, and recalling old results

The book and software are intuitive and guide the reader through the process of setting up

a regression model and analyzing it.  The software also contains an on-line help file which

contains thumbnail descriptions of the significance of the output of the regression analysis

and detailed instructions on how to use the software.  This help file is no substitute for

reading and understanding the book.

The book and software describe and implement all the tools needed for a complete linear

regression analysis.  Up to about 20 independent variables or regressors can be selected in

a multiple regression, and second and third order models (including interactions) can easily
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be set up using the built-in dialogs.  In the Polynomial Regression module, up to ninth

order polynomials can be constructed.  There are limitations with respect to the number of

data points.  The accompanying software is best suited for small and intermediate data sets

of 50 to several 100 data points.  This is a size which most often occurs in "everyday

problems" encountered by students and scientists.  It was not developed to handle large

data sets of several thousand and more data points used by, for example, sociologists or

pharmacological researchers.

The following approach is repeated throughout the book.  A theoretical discussion of a

statistical technique is presented followed by chapters which explain the features of the

software pertaining to the theory discussed before. The sequence in which the theory is

introduced follows an order which is most likely employed by the user: introduction to

regression and types of models, ANOVA, hypothesis testing, outlier analysis, and

graphical evaluation including surface plots. At the end of the book, a tutorial is included

with data sets (also included in the Excel spreadsheets which come with the software)

which are analyzed to illustrate the utility of the software.  All the analyses presented can

readily be reproduced by the reader.  The book starts with the usual discussion of

coefficient of variation and ANOVA analysis.  It contains a variety of sections on different

statistical parameters and residual analyses useful for model adequacy checking.  For

example there are sections on stepwise regression ("auto fitting") techniques, the effect of

response and factor transforming, and the detection of outlier, influence and leverage

points.  Although the treatment of linear regression is very complete, the book is not

intended as a fundamental theoretical textbook of linear regression aimed at statisticians.

It is intended to teach regression to non-statisticians by applying linear regression to real

data sets.

Experimental design is covered as it relates directly to regression analysis.  This restricts

the design package to factors and responses that are continuous, quantitative variables.

Screening designs including full and fractional (Resolution 3-5) 2 level factorial and

Plackett-Burman designs are covered.  Response surface modeling (RSM) designs
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including face centered, circumscribed and inscribed central composite designs and Box-

Behnken designs are included.  The advantages and disadvantages of the various design

types are covered.  Advanced ideas such as aliasing, orthogonality, rotatability and

sequential experimentation are explained.

The software accompanying Essential Regression and Experimental Design for Chemists

and Engineers delivers all the tools necessary for a thorough, complete experimental

design and linear regression analysis combined with easy handling and impressive output

possibilities which rival the features of much more expensive and much less intuitive

statistics packages.

Even as we go forward toward an electronic society, traditional publishing media (books)

show no signs of being dethroned as the way to learn detailed technical concepts.

However, books with illustrative examples and software that can be immediately applied

do represent a vast improvement over a solely traditional approach.  We believe that this

"learning by doing" approach, along with a reasonably complete fundamental treatment

represents an ideal way to learn new and useful technology.  This is especially true for

well-known and well defined concepts such as regression.  We hope that you find

Essential Regression and Experimental Design for Chemists and Engineers a good

example of this new hybrid type of book.

Dave Steppan

Joachim Werner

Bob Yeater

Gibsonia, PA

Bethel Park, PA

Moundsville, WV

June 1998
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1. Regression Models, Variables, Coefficients

1.1 Theoretical Background

1.1.1 Introduction to Linear Regression

“Regression” is derived from the Latin word regredi meaning “to go back to”, or to “take

refuge to” or “to resort to”.  Actually, when we perform a “regression”, we are taking

resort to approximating an observed, empirical variable (output, response) by an estimated

one, based on a functional relationship between the estimated variable (we will call it yest)

and one or more regressor or input variables x1, x2, …xi .  We often have to do this when

we try to describe data sets, when parameters in known scientific equations have to be

estimated, when we try to develop new models describing and even predicting a specific

response, or when we try to control and optimize processes.

The value of the estimated variable yest depends on the functional relationship with the

regressors or input variables and therefore yest is also called “dependent” variable. Ideally,

the regressor variables do not depend on anything else than the will of the data analyst,

who can chose their settings. Thus, they are called “independent” variables.

Developing this functional relationship we have to keep in mind that we cannot expect

empirical data to be explained without any residual doubt. What we actually try to do is to

“explain” the response with the set of the input variables as well as possible. This means,

we have to account for the residual ambiguity the error contribution. Possible sources for

error are random or measurement error, and the “lack-of-fit” error caused by the

inaccuracies of our estimation function. Our ultimate goal in regression is to minimize this

lack-of-fit error.

One can easily see that the functional relationship between yest and the regressors can take

many forms. The same is true for the definition of the estimation error and the way to
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minimize it. These are the reasons for the numerous variants within the area of regression

analysis.

Linear Regression simply means that the functional relationship between yest and the

regressors can be expressed by a linear equation or, in other words, a sum of terms

including the error:

y  = b  + b x  + b x  + + b x  + errorest i i0 1 1 2 2 ...                           Eq. 1-1

For the case of only one regressor variable (x1), equation (1-1) can be reduced to the

familiar equation of a straight line, plus the error term, with b0 being the intercept, and bi

being the slope:

y  = b  + b x   + errorest 0 1 1                                            Eq. 1-2

Equation (1-2) describes the case of “simple” Linear Regression, giving us the best fit line

through data points in a x-y-plot.

1.1.2 Transformation of Variables

With more than one independent x variable, we perform Multiple Linear Regression,

sometimes contracted to Multiple Regression, although the term “linear” is essential for

defining the method. Let us use the letter j as an index for the independent variables

running from 1 to i. In equation (1-1), b0 is referred to as the constant term, meaning it

gives the expected value for y with all xj set to zero. The bj are the regression coefficients

for the respective xj. Simply put, they describe to the magnitude of the effect of a unit

change of the corresponding xj given that the other regressors present are kept constant

(the coefficient bj for a given xj without the other independent variables present could be

different!). If x1 changes from 1 to 2 units, and the other regressors are kept constant, yest

will change to yest + b1.  To make the individual bj independent of the scaling units of the
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variables and thus comparable with respect to their magnitude, the independent variables

and also the response can be transformed.

The transformation techniques commonly used consist of a centering of the variables

which can be followed by a normalization step to transform the scale (also called scaling

of the variables).

Centering can be done by simply subtracting the average over all data points of a given

regressor variable xj (or the response y) from the variable at the given data point. In

addition to that, a division by the respective average transforms all the variables to the

same scale. We will use the index k for the data points, with k running from 1 to n (the

total number of data points). Following equation exemplifies these procedures for the

independent variables, xj:

z x xjk jk k= −                                                   Eq. 1-3

or

z
x x

xjk
jk k

k

=
−

                                                   Eq. 1-4

In the so-called unit normal scaling, for a given data point, the difference between a

variable xjk (yk) and the average of the variable over all data points,xk (yk), is divided by

the sample standard deviation (s) of this variable. The scaled variables have a mean of zero

and a standard deviation and variance of 1.

z
x x

sjk
jk k

k

=
−

                                                    Eq. 1-5

s
x x

nj

jk k
k

n

2

2

1

1
=

−

−
=

∑ ( )
                                                  Eq. 1-6
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The unit length scaling uses the so-called corrected sum of squares instead of the standard

deviation. The corrected sum of squares is simply the numerator of the expression for

sample variance, i.e., the sum of the squared differences between individual variable and

the average of the variable over all data points. This leads to variables with a mean of zero

and a “unit length” of 1.

w
x x

Sjk
jk k

jj

=
−
2

                                                     Eq. 1-7

S x xjj jk k
k

n

= −
=

∑( )2

1

                                              Eq. 1-8

When applied not only to the independent variables, but also to the response, all these

scaling techniques remove the constant term b0 or the intercept from the model equation

or, in other words, the estimate for the constant term b0 becomes zero by definition. The

new regression coefficients obtained after scaling are so-called standardized regression

coefficients (sometimes called betas). Many statistical computer programs scale the model

variables by default and report both betas and “raw” regression coefficients.

The main reason for using scaling techniques is to reduce the possibility of round-off

errors in the calculations when using the raw variables, especially if these variables differ

significantly in magnitude.

1.1.3 Regression Model Equations

It is important to realize that linear regression also includes model equations which contain

“higher-order terms” (quadratic, cubic, etc.) derived from the independent variables. The

functional relationship between yest and the xj has to be linear in the coefficients bj, not

necessarily linear in the xj! For example, the following equation (1-9) is also a linear

regression model equation:

y  = b  + b x  + b x  + b x x  + b x  +b x  + error est 0 1 1 2 2 3 1 2 4
2

5 2
2

1
                  Eq. 1-9
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With

x3 = x1x2

x4 = x1
2

x5 = x2
2

Equation (1-9) becomes the obviously linear equation (1-10):

y  = b  + b x  + b x  + b x  + b x  +b x  + error est 0 1 1 2 2 3 3 4 4 5 5                 Eq. 1-10

A polynomial such as in equation (1-11) used to approximate our response variable also

constitutes a linear regression model, since it is linear in the coefficients bj:

y  = b  + b x  + b x  + b x  +  error est 0 1 1 2 1
2

3 1
3                             Eq. 1-11

This special case is referred to as Polynomial Regression Model. It is just another variant

of the general Linear Regression method.

Equation (1-9) represents what we refer to as a full quadratic model equation or full

second order equation. It contains two linear terms or first order terms x1 and x2, their

squares or second order terms x1
2 and x1

2, and the second order interaction x1x2 between

the two linear terms. This is a very common model for responses depending on two

regressors analyzed by Linear Regression. It can be modified to a second order model

without the interaction, or to a model with linear terms and their interaction only. Second

order or quadratic models, either complete or restricted, are frequently used for Linear

Regression. Third order models (cubic terms or third order interactions, such as x1x2x3, or

x1
2x2) are less common. Generally, the higher the order of the model, the more likely the

model equation simply “connects the dots” of the data points rather than fits a meaningful

regression function through the data. This effect can easily be reproduced when using a

software package such as MS Excel to fit a polynomial curve through data points while

consecutively increasing the order of the polynomial. Our goal in Linear Regression is to

find the best of all approximated functions without just connecting the dots, i.e., without

simply fitting the error.
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Sometimes apparently nonlinear relationships can be transformed into model equations

suitable for linear regression:

y
b x
eb x

= 1 1

2 2
                                                           Eq. 1-12

becomes

 2211 lnlnln x-bx + by =                                        Eq. 1-13

Equation (1-13) obviously can be used as a model equation for linear regression with one

response (lny), a constant term (lnb1), and two regressor terms (lnx1, b2x2). However, be

aware that we have performed a nonlinear transformation. Therefore, the estimates of the

coefficients may differ from a nonlinear regression using the original variables!

1.1.4 The Least-Squares Method

The method used to find the coefficients bj of our general model equation (1-1) is called

least squares estimation. This means that the error term we used in the model equations is

defined as the difference between observed response variable y and estimated yest for a

given setting of the xj at each data point. The total error must somehow be defined by

summations over all data points or “cases”.  Since we assume a random distribution of the

individual errors with a mean of zero, a simple summation would ideally lead to zero.  At

least it leads to negative and positive differences canceling each other out. This can be

avoided by squaring the errors for each data point and sum these squares. The desired

optimum regression model then has to give us a minimum for this sum of squared errors,

hence “least squares estimation method”.

A set of data consisting of n points can be considered a sample of the entire “population”

of data points. A given point or “experiment” is defined by the settings of the i input

factors or independent variables x1, x2,…, xi of our model and the dependent variable or

response yk at that given experiment or “run”. Whereas the general equation (1-1) can be
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considered the “population model equation”, our data set forms a system of n linear

sample equations:

experiment, run sample equations, Eq. 1-14a-c

1 y  = b  + b x  + b x  + + b x  + errori i1 01 1 11 2 21 1 1...

2 y  = b  + b x  + b x  + + b x  + errori i2 02 1 12 2 22 2...

n y  = b  + b x  + b x  + + b x  + errorn n n n i in n0 1 1 2 2 ...

Each of these equations can be rearranged to bring the error term on the left side. Then

the square of the sums of all error terms can easily be defined:

experiment, run sample equations for error, Eq. 1-15a-c

1 error = y b   b x   b x   b x  i i1 1 01 1 11 2 21 1− − − − −...

2 error = y b   b x   b x   b x  i i2 2 02 1 12 2 22 2− − − − −...

n error = y  b   b x   b x  b xn n n n n i in− − − − −0 1 1 2 2 ...

Again, using k as the running index for the n experiments or data points and j as the index

for the i independent variables, the Sum of Squared Errors (SSE) is obtained by summing

the squares of the right hand sides of the equations above:

SSE y  - b - b x  - b x  -...- b x

SSE y  - b - b x

k k k i ik

k  i ik
j=

i

=

=

∑

∑ ∑

(

(

k=1

n
2

k=1

n
2

)

 )

0 1 1 2 2

0
1

               Eq. 1-16a+b
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The coefficients b which meet the least squares criterion can be calculated by setting the

partial derivatives of SSE with respect to each bj (b0 included) to zero. This is the well-

known procedure for finding extrema of functions from which derivatives can be obtained.

Thus, the minimum for SSE is defined by:

δ
δ

S
b

b b bi
0

0 1

0
, ...

=  and 
δ
δ

S
b j b b bi0 1

0
, ...

=                                Eq. 1-17a+b

which leads to

- 2 (y  -  b  -  b xk 0 j jk
j=1

i

∑∑ =
=

) 0
1k

n

                                       Eq. 1-18

and

- 2 (y -  b  -  b x xk 0 j jk
j=1

i

jk∑∑ =
=

) 0
1k

n

                                     Eq. 1-19

These relationships form a system of (i+1) = p equations. Each equation can be rearranged

with the y terms on the right hand side. We arrive at the so-called least squares normal

equations (1-20,21). There are i+1 = p of these, i for each of the coefficients bj of the

independent variables xj (equations 1-21), and one more for the “constant” or “intercept”

b0 (equation 1-20). The total number of unknowns in our system of equations, p, is also

called the number of parameters in the regression model equation.

nb  + b x +  b x +...  + b x y0  1 1k  2 2k  

k=1

n

 i ik
k=1

n

k
k=1

n

∑ ∑ ∑∑ =
=k

n

1

                   Eq. 1-20

b x  + b x +  b x x  +...  + b x x x y0 1k
k=1

n

1 1k
2

 2 1k 2k
k=1

n

 i 1k ik
k=1

n

1k k
k=1

n

∑ ∑ ∑ ∑∑ =
=k

n

1

…….                                                             ……                             Eq. 1-21
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Basically, we are dealing with a two-dimensional problem here. Looking at our set of

sample equations above, we have n equations with the p=(i + 1) unknown parameters in

each one from our model equation (dimensions n × p). After transformation to the normal

equations we obtain a system of p equations with p terms in each one (p × p). Thus, it is

not surprising that the most elegant and convenient way to solve the problem of finding

the set of regression coefficients b which gives a minimum for SSE entails matrix

algorithms. We are not going to go through this procedure in every gory detail. Other

books do that, and they are written by real mathematicians (see recommendations in the

Literature section of this book). Suffice it to say that the starting point of the calculations

is the matrix notation (1-22) for the system of sample equations (bold small letters or

words denote vectors, bold capital letters symbolize matrices!):

y =  Xb +  error                                                 Eq. 1-22
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                          Eq. 1-23

The n dependent variables or outputs become the n × 1 vector y, the p parameters

(independent variables plus one constant or intercept) are represented by the product of

the n × p matrix X and the n × 1 vector b, and the n error terms of the n observations or

runs form the n × 1 vector error.

The solution of the least squares problem can be obtained through a series of matrix

transformation. We will give the final steps.  The least squares criterion of SSE=0 leads to:

X Xb =  X y ' '                                                            Eq. 1-24
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Equation 1-24 is simply the matrix representation of the normal equations (1-20,21).

Finally, the vector of the estimated coefficients b is given by

b =  (X X) X y-1' '                                                    Eq. 1-25

X’ denotes the transpose of X, where the indices for the dimensions n and p are

exchanged (rows become columns and vice versa). X-1 is the inverse matrix of X, which

means the matrix product XX-1 becomes the unitary matrix E with diagonal elements of

value 1 and non-diagonal values of zero.

Consequently, finding the regression coefficients bj which meet the least squares criterion

boils down to a series of matrix and vector transformations and multiplications. This is a

task which is ideally suited for computers, and fortunately, we do not have to worry

anymore about having to perform this tedious work manually. However, one caveat of

equation (1-25) is the fact that the matrix product (X’X)-1, a quadratic matrix with the

dimensions p × p (again, p = number of independent variables plus the constant term or

number of parameters), has to be calculated. This matrix, however, sometimes cannot be

calculated if there is a high degree of collinearity between the columns of the matrix of the

independent variables X, i.e., if the regressors are not linearly independent. This can

happen, for instance, when performing Polynomial Regression, where the regressor

variables are different orders of one input and thus are strongly correlated. In computer

programs, this can lead to error messages such as “division by zero”.  This is one of the

numerous problems caused by multicollinearity (see also Chapter 3.1.6).

Using matrix notation, the vector of the fitted or predicted responses, yest, can be

calculated by

y X(X' X) X'yest
1= −                                              Eq. 1-26

The matrix X(X’X)-1X’ has the dimensions n×n and is called the hat matrix. It plays an

important role in regression analysis, especially regarding model adequacy checking

(Chapters 3 and 5).
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It is important to realize that the regression coefficients bj calculated by the least-squares

method are estimated parameters. According to the Gauss-Markov-Theorem, they are the

linear unbiased estimators with the least error variance compared to all other unbiased

estimators. This error variance can also be estimated and depends on the Sum of Squared

Errors (SSE), introduced above, and the degrees of freedom of the regression model and

of the residual error, respectively.

Assuming a data set with n data points, the total number of degrees of freedom in Linear

Regression is (n-1). The number of degrees of freedom occupied by the regression model

is equal to the number of regression coefficients associated with regressors, i.e., the

number of coefficients minus the intercept or constant term b0. In the equations above, we

used i to denote this number. The number of degrees of freedom left for the error

calculations is the total number minus the number occupied by the model, i.e., (n-1)-i. One

can see that for the Linear Regression model with one constant term, there is another way

for defining the error degrees of freedom: since the total number of terms in the model

including the intercept is just p = i +1, the error degrees of freedom (ferror) can be defined

as:

ferror = (n - p) = number of data points - number of model terms (including intercept)

The Sum of Squared Errors (SSE) divided by the error degrees of freedom gives the so-

called Mean Squared Error (MSE):

MSE
SSE
n p

=
−( )

                                                 Eq. 1-27

The Mean Squared Error (MSE) is equal to the unbiased estimator of the error variance,

σ2. This is a model-dependent estimator of the error variance. Its value depends on the

regression model used in the least-squares calculations. The square root of the model-

dependent error variance MSE used as an estimator for the model-dependent “standard
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deviation” and is called the Standard Error of the regression model. This should not be

confused with the Standard Errors for the individual regression coefficients or

observations as described in the following chapter.

1.1.5 Confidence Limits for Regression Coefficients and Observations

In linear regression, we assume that the error terms are uncorrelated random variables,

they do not depend on each other (if they depend on each other, we call this

autocorrelation, see Chapter 3.1.7.), and that they follow a normal distribution. Plotting

the error distribution should ideally give a bell-shaped curve with a mean of zero and a

standard deviation σ. It follows from the model equation (1-1) that the responses also

have to be random variables. Due to the random error and lack of fit, there exists a

probability distribution for a given yk at each possible setting of the xkj,. Therefore, when

reporting results of regression analyses, the estimates of the expected errors and

confidence limits are essential. They determine the range where we can find the actual

response with a certain probability. Actually, the expected value yk(est) is the mean of a

distribution for a given setting or data point k.

The confidence limit or interval (CI) depends on the confidence level α or the probability,

that the “actual” response can be found in the given confidence range. A t-distribution

with the (n-p) error degrees of freedom is used to estimate these confidence regions. In

most cases, the confidence intervals are calculated at the 95% probability level. A higher

probability leads to wider confidence ranges and vice versa.

Let us define the i regressors plus intercept for this setting as a row vector

xk’=[1,x1k,x2k,..,xik]. The confidence interval CI at 95% probability level around the

expected mean is defined by:

CI t MSEy n pk est( ) ( , )= ± −
−

95 x '(X'X) xk
1

k                       Eq. 1-28
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The expression under the square root is also referred to as Standard Error for Mean

Response. Note that both Standard Error and CI depend on the location of the data point

in x space!

If we want to predict new responses based on settings which do not occur in our data, we

have to use a wider confidence range to reflect the increased uncertainty:

CI t MSEy n p new newnew est( ) ( , ) ( )= ± +−
−

95 1 x '(X'X) x1                                  Eq. 1-29

In this case, the square root term is also called Standard Error for Prediction. Again, the

value for CI in equation (1-29) depends on the settings for the xj of the new data point!

These confidence ranges will be discussed again in Chapter 5 in connection with the

prediction module of Essential Regression.

By the same token, we can define a confidence limit or confidence range around the

estimated regression coefficients bj which depends on the confidence level or the

probability, that the “actual” regression parameter can be found in the given confidence

range. At the 95% level, the equation for the confidence limit of a given bj is:

[ ]CI t MSEb n p
jjj

= ± −
−

95
1

,
'( )X X                                                   Eq. 1-30

The term in square brackets denotes the jth diagonal element of the (X’X)-1 matrix we

used above in the calculations of the least squares estimators (Equation 1-25). The square

root term is also called the Standard Error of the regression coefficient bj.

1.1.6 Intercept-free Regression Models

In the beginning of this introduction, we defined equation (1-1) as the basic model

equation for our derivation of the least-squares method. This equation contains a

coefficient b0 symbolizing a constant term. This constant is also called intercept because,

when using only one independent variable x, b0 gives the value of y at x = 0, i.e., the point
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where a graph of y = b0  + b1 x intercepts the y-axis. However, we can also define a model

equation with b0 set to zero by definition. We arrive at what is referred to as a no-

intercept model or intercept-free model. For the matrix equation (1-25) used to calculate

the regression coefficients, this means that b0 in the coefficient vector b is zero by

definition.

In situations where the dependent variable or the response can only be zero when all the

independent variables are zero, intercept-free models appear appropriate. This occurs

most often when analyzing physical or chemical relationships. Without this background

information implying an intercept of zero, however, both intercept and no-intercept

models have to be evaluated carefully. Sometimes, a scatter diagram of the data seems to

indicate that the graph can be extended through the origin. However, if the available data

are remote from the origin, such an extrapolation can lead to erroneous conclusions. If

both an intercept and no-intercept model are possible, the Mean Squared Error (MSE) is a

good basis for comparison. The smaller MSE indicates the better model.

1.2 Application: Regress Menu, Input Dialogs of Essential Regression

1.2.1 Overview

The contents of the previous chapter give the theoretical background for the following

description of the Regress Menu and the Input Dialogs of Essential Regression (ER).

Most of the topics covered theoretically in the previous chapter will be practically applied

here and guide through the first steps of arriving at a regression model using ER. This

concept of presenting the underlying theory first followed by the practical application

within ER will be continued throughout this book. Admittedly, the resulting order of

introduction of the different theoretical aspects of Linear Regression is sometimes in

contrast to the didactic approach used in most textbooks on Linear Regression. However,

by following the logical sequence of the dialogs and menus of ER, we intend to facilitate

the use of ER, especially for first time users, and simultaneously give a theoretical

background of Linear Regression.
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We assume the user has an Excel worksheet open with the data to be evaluated in tabular

form, i.e., the cases or data points are arranged in rows, the variables in columns. We also

assume the top row contains header information for each column (variable names). The

cursor should highlight the leftmost cell in the header row of the table. We refer to this cell

as the pivot cell.

There are certain limitations to the variable and sheet names used. They should not contain

hyphens, slashes, plus and minus signs or similar characters which could be misread for

mathematical expressions. These characters could cause errors which would lead to a

termination of the program.

After loading ER, an additional menu option, Regress, becomes available in the Main

Menu of MS Excel. When selecting either the Multiple Regression or Polynomial

Regression option, ER reads the header information of the data table from left to right and

displays the column headers as possible variables (regressors and responses) in the

corresponding list boxes of the Multiple or Polynomial Regression Input Dialogs. In these

dialogs, the user can select the desired independent variables (factors, regressors), the

dependent variable (response), and the type or the order of the regression model. For

Multiple Regression, ER offers linear, quadratic, and cubic models, and second and third-

order models with and without interaction. For Polynomial Regression, the user can

choose from first to ninth-order polynomials in one variable. In addition, the input dialogs

allow the user to transform the independent variables (regressors) either by centering or

standardization (scaling). Furthermore, the user can choose between an intercept or non-

intercept model. Also, the probability level of the confidence intervals for the regression

coefficients can be adjusted here.

1.2.2 Regress Menu



27

This Menu is accessible in the MS Excel Main Menu once ER is loaded as an Add-in.

Figure 1-1: Regress Menu

Multiple Regression

This option opens the Multiple Regression Input dialog box. Essential Regression

performs a Multiple Linear Regression based on the least squares method.

Polynomial Regression

This option opens the Polynomial Regression Input dialog box. Essential Regression

performs a Polynomial Regression which uses a linear or higher order polynomial of one

variable (predictor, regressor, independent variable, x) to describe the response

(dependent variable, y).

Analyze Design and Simulate Data

These two menu options are used in connection with Essential Experimental Design

(EED) described in detail in Chapter 6. To use the Analyze Design option, a worksheet

created in EED has to  be the starting point. However, the Simulate Data menu item can

also be used in Essential Regression (ER) to create a simulated data set based on given
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input variables and predefined regression coefficients (see Chapter 6 and the Quick Guide

for more details).

Relink Buttons

This menu option relinks the buttons of the XLS output sheet created with Essential

Regression to the Essential Regression Add-In. This is sometimes necessary if the

worksheet buttons don’t work despite the fact that the Add-In is loaded in memory. This

will happen if ER is moved from the directory it was in when the worksheet was created.

See Chapter 5 for more details about the XLS output sheet.

Duplicate Regression

Activating this menu option generates copies of the current XLS output worksheet (see

Chapter 5) generated by Essential Regression. A XLS output sheet must be the active

sheet.
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Help

Opens the Essential Regression on-line help.

Unload

Removes the Regress Menu from the Excel Main Menu and unloads the Essential

Regression Add-In file. If the Add-In is loaded, but the Regress menu is not visible, it can

be reactivated by using the {Ctrl+M} key combination.

About

Gives information about the current version of Essential Regression and the system it is

installed on.

1.2.3 Multiple and Polynomial Regression Input Dialog Boxes

The input dialog boxes appear when the user activates either the Multiple Regression or

Polynomial Regression option in the Regress menu

Figure 1-2: Multiple Regression Input Dialog
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Figure 1-3: Polynomial Regression Input Dialog

Predictor(X)

(Polynomial Regression)

Choose one predictor or regressor variable x for a polynomial model.

Select Factors

(Multiple Regression)

Choose independent factors or variables (regressors) xj for the regression model. Up to

nine independent factors can be selected.

Type of Regression

(Polynomial Regression)

Specify the order of the regression model. ER allows the user to specify linear (1st order

regression, "simple" linear regression with one predictor), quadratic, cubic etc., up to to

9th order polynomials of the regressor or independent variable x.
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Type of Regression

(Multiple Regression)

Specify the order and type of the regression model. "Full Quadratic" and "Full Cubic"

contain all higher order terms including interactions. Subsets of these models are

"Interaction" (no quadratic terms, but linear-linear interactions), "Squared Interaction" (no

cubic terms, but squared-linear interactions), "2nd order, no interaction" (only linear and

quadratic terms), and "3rd order, no interaction" (linear, quadratic, and cubic terms

without interactions).

Response(Y)

Choose the response or dependent variable Y

Regress Intercept?

Checked

A constant parameter which is independent of the settings for the xj is used in the

regression model. A so-called intercept-model is used as described in the previous

chapter.

Unchecked

Specifies a non-intercept regression model or a “regression through the origin”. There

is no constant parameter in the regression model. See remarks at the end of the

previous chapter regarding the utility of non-intercept-models.

Centering or standardizing the response together with all the independent variables (see X

Transform below) creates a non-intercept model by definition, and ER will produce a

constant term of zero even when the Regress Intercept box is checked.
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X Transform

This list box gives several options for transformations of the predictor (regressor)

variable(s) xj. Transformations of the xj can be performed both in the Multiple and

Polynomial Regression mode.

None

No transformation; regression model will be based on raw data.

Center All Terms

Centers both linear and higher order terms of the predictor (regressor) variable(s) xj

after calculating the higher order terms from the linear terms. Centering is done by

dividing the difference between the maximum and the average of a given xj by the

average.

Standardize All Terms

Standardizes both linear and higher order terms of the predictor (regressor) variable(s)

xj after calculating the higher order terms from the linear terms. Standardization is done

by dividing the difference between the maximum and the average of a given xj by the

standard deviation. This corresponds to the unit normal scaling method described in

the previous chapter. The resulting transformed variables have a mean of zero and a

standard deviation of 1.

Center Linear Terms

Centers only linear terms of the predictor (regressor) variable(s) xj and calculates the

higher order terms from the centered linear terms. Centering is done by dividing the

difference between the maximum and the average of a given xj by the average.

Standardize Linear Terms

Standardizes only linear terms of the predictor (regressor) variable(s) xj and calculates

the higher order terms from the standardized linear terms. Standardization is done by
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dividing the difference between the maximum and the average of a given xj by the

standard deviation. This corresponds to the unit normal scaling method described in

the previous chapter. The resulting transformed variables have a mean of zero and a

standard deviation of 1.

It is important to emphasize that only the regressor or independent variables xj are

transformed after selecting one of the transformation options in the X Transform option!

The response can be independently transformed using the Y Trans option  which is part of

the Main Dialog discussed in the next chapter. Centering or standardizing the response

together with the all independent variables using the All Terms options creates a non-

intercept model, and ER will produce a constant term of zero even when the Regress

Intercept box is checked.

As discussed in the previous section of this chapter, centering or scaling the variables can

be helpful when higher-order terms or polynomials are used in the regression model or if

the variables differ significantly in magnitude. These conditions can lead to ill-

conditioning of the matrix of the independent variables. This means that the matrix

inversion used for the calculation of the regression coefficients can become inaccurate and

significant error is introduced in the estimation of the coefficients.

Coefficients Confidence Intervals

Specifies the probability or significance level of the confidence intervals of regression

coefficients and predicted responses. By default, it is set to a probability level of 95%.

Increasing this number leads to wider confidence limits and vice versa. Other than that, it

has no effect on the regression model.

Next

Opens the Polynomial or Multiple Regression Main Dialog
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2. Tests for Significance of the Regression Model and

Parameters

2.1 Theoretical Background

2.1.1 Introduction into Hypothesis Testing

In the previous chapter, we have shown that Linear Regression allows us to estimate a

response variable depending on the values or settings of one or more independent

variables. By applying the so-called least-squares technique, we can fit a model equation

containing one or more independent variables by minimizing the residual error measured

by the sum of squared deviations between the actual and the estimated responses. We do

so by calculating estimates for the regression coefficients, i.e., the coefficients of the

model variables including the intercept or constant term. However, this does not tell us if

the calculated coefficients or the model equation actually have a statistical significance. In

other words, does the linear relationship we defined when setting up the model equation

have any meaning when compared to the error in the data? Does an individual regression

coefficient for a given variable have any significance or could we drop it from the model

without sacrificing the quality of the result? These questions are behind the tests for

significance of the regression model and the individual regression coefficients.

In these situations, statisticians tend to define so-called null hypotheses. In order to test

the significance of the model, they assume the worst case scenario by saying: “The null

hypothesis is true if there is no linear relationship between any of the independent

variables”. This is equivalent to the equations:

H0:b1 = b2 =…. bi = 0                                          Eq. 2-1

H1:bj ≠≠ 0 for at least one j                                     Eq. 2-2

with H0 denoting the null hypothesis, H1 being the rejection of the null hypothesis, and

b1…bi representing the intercept and the regression coefficients of the i independent
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variables in our model equation (1-1). If H0 is rejected, there is at least one independent

variable significantly contributing to the linear model, and we can conclude that there

exists a functional relationship between the response and at least one of the variables.

Similarly, the hypotheses for the individual coefficients bj can be defined:

H0:bj = 0                                                       Eq. 2-3

H1:bj ≠≠ 0                                                       Eq. 2-4

If H0 is  rejected, the respective coefficient significantly contributes to the model.  If H0

cannot be rejected,  the corresponding variable can be eliminated from the model

equation.

2.1.2 Test for Significance of the Regression Model

The null hypothesis for the regression model (eq. 2-1a) is simply tested by comparing the

effect or variability caused by the regression model to the overall error. This comparison is

based on the so-called Total Sum of Squares (Syy), the Regression Sum of Squares (SSR),

and the Sum of Squared Errors or Error Sum of Squares (SSE).

In Linear Regression, we define the total variability in the n observations as the sum of the

squared differences between a the responses yi (k=1…n) and the average of all responses,

y. This is also called the Total Sum of Squares, Syy.
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                               Eq. 2-5

By the same token, the Regression Sum of Squares, SSR, which gives the variability in the

response y explained by the model equation, is defined the sum of the squared differences

between a the estimated responses yi(est) (k=1…n) and the average of all responses, y:
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                                 Eq. 2-6

We already defined the so-called Error Sum of Squares, SSE, in the previous chapter. It is

the sum of the squared residuals, or, in other words, the sum of the squared differences

between the observed responses, yk, and the predicted or estimated responses based on the

model, yk(est).

SSE y yk k est
k

n

= −
=

∑ ( )( )
2

1

                                        Eq. 2-7

The total variability in the observations is the sum of the variability or effect caused by the

regression model, SSR and the error contribution. So, instead of using equation (2-6), the

effect or variability caused by the regression model can be found by calculating the

difference between the total variability or Total Sum of Squares and the Residual or Error

Sum of Squares:

Syy = SSR + SSE                                               Eq. 2-8

SSR = Syy - SSE                                                Eq. 2-9

Associated with Syy, the Total Sum of Squares, are n-1 degrees of freedom, with n being

the number of data points in the regression. One degree of freedom has been “lost” or

used up by the constraint that the sum of all the differences (yk-y) is zero.

The number of degrees of freedom for the model, associated with the Regression Sum of

Squares, SSR, equals the number of coefficients bj,without the constant term, b0. This is

equal to the number i of independent variables, or model terms without the constant, if

present.

The residual or error degrees of freedom are found by subtracting the degrees of freedom

for the model from the degrees of freedom for the Total Sum of Squares. This is
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equivalent to the difference between the number of data points, n, and the number of terms

in the model including the constant, p.

f n

f i

p i

f n i n i n p

S

SSR

SSE

yy
= −

=
= +

= − − = − + = −

1

1

1 1( ) ( )

                          Eq. 2-10a-d

The test for the significance of the regression model is performed as an analysis-of-

variance procedure by calculating the ratio between the Regression Sum of Squares

(SSR) and the Error Sum of Squares (SSE) and comparing the result to the F-statistic

with the appropriate degrees of freedom at a given significance level.
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                          Eq. 2-11

From the previous chapter, we already know that the division of SSE by the error degrees

of freedom gives the Mean Squared Error, MSE. By the same token, the term SSR/i is

called the Regression Mean Square, MSR.

The null hypothesis H0 is rejected if F0 is greater than the corresponding critical value Fcrit

of the F-distribution for a given significance level with i and (n-1-i) degrees of freedom. In

other words, for a significance level α, the hypothesis that the regression model is not

significant can be rejected at the α-level if F0 >Fcrit= Fα,i,n-1-i. Note that the significance

level α stands for the probability that the null hypothesis is true, i.e., the model is not

significant. Usually, significance levels α of 0.10, 0.05, and 0.01 are used to determine

critical values Fcrit., where decreasing significance levels indicate a higher confidence for

the model. The values Fcrit for the F distribution increase with decreasing significance level

α and increasing degrees of freedom fSSR  for the regression model, and they decrease with

increasing degrees of freedom fSSE for the error contribution. For a given model, the larger

the value of MSR/MSE, the lower the significance level α leading to critical values for Fcrit

which are smaller than F0, and the higher the confidence level for the significance of the

model, i.e. a rejection of H0. On the other hand, increasing the number of model terms for

a given data set, i.e., increasing fSSR and decreasing fSSE, can lead to a decrease of MSR
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and an increase of MSE up to a point where the F0 becomes smaller than Fcrit and the

model is no longer significant. If this occurs at significance levels α of higher than 0.1, the

model is considered to be no longer significant.

An analysis-of-variance- or ANOVA-table such as Table 2-1 is commonly used to

summarize the test for significance of the model which we just described. There are

variations in the layout of this table. In computer programs, usually the significance level α

is calculated and given in addition to the corresponding value of F0=MSR/MSE, so we do

not have to look up the values for Fcrit in a table anymore. For example, if the computed

value for α is .076, then the model is significant at the 0.1 level, but not significant at the

0.05 level. Again, smaller values for the computed significance levels (also called error

probabilities) indicate more significant, i.e., “better” models!

Table 2-1: ANOVA table for a model with i regressor variables and n observations.

Source of

Variation

Sum of

Squares

Degrees

of

Freedom

Mean Square F0 Significance α

or Error

Probability P

Regression

Model

SSR i MSR = SSR/i MSR/MSE = P(H0:F0≤Fcrit)

Residual (Error) SSE n-1-i MSE

= SSE/(n-1-i)

Total Syy n-1

2.1.3 Test of Significance on Individual Regression Coefficients

The significance test on the regression model tells us if at least one of the regression

coefficients is different from zero.  We have to perform another test to be able to assess

the significance of the individual coefficients. This test forms the basis for model

optimization by adding or deleting coefficients (see Backward Elimination, Forward

Selection, and Autofitting in Chapter 4). A model with many coefficients is not necessarily



39

the best, and a model with only a few coefficients might improve dramatically by adding

another, but we have to know which coefficient actually plays a significant role in the

model.

The underlying null hypothesis was described above. A t-test statistic is used to test this

hypothesis:

t
b

MSE C
j

jj

0 =
*

                                                Eq. 2-12

Cjj is the diagonal element pertaining to the coefficient bj of the matrix (X’X)-1 which we

introduced in the description of the least squares method in chapter 1 (Eq. 1-24). Note

that the square root term equals the so-called standard error of the individual regression

coefficient bj.

Similar to the F-test used for checking the model significance, we compare the calculated

t0 to the critical t-value tcrit for a given significance level α and the error degrees of

freedom, n-1-i. Note that there can be differences in the tables of the t-distribution given

in the literature depending on the definition of α. In most tables, the t-distribution is given

for the so-called two-sided or two-tailed significance level. In this case, the critical value

we look for is tα, n-1-i.. This means, the error probability or significance on each side of the

two-tailed t-distribution s defined as α/2. For a one-sided t-test, the fraction under the

positive or negative tail of the distribution is defined as α.  If the table lists the one-sided α

levels, we have to look for tα/2, n-1-i. The built-in t-distribution of MS Excel uses the first

notation. For instance, t.05,1 can be calculated by entering the worksheet function

“=TINV(.05,1)” and results in the value 12.706.  Certain books, however, list one-sided

significance levels, where t.05,1 is listed as 6.314, and t.025,1 gives 12.706.

If the calculated value for t0 is larger than tcrit, we reject the null hypothesis at the given

significance level. For instance, with α=0.05, we would say that there is only a 5% error

probability that the corresponding coefficient is not significant. Note that this significance
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is based on the presence of all the other regressor variables in the model. It might change

dramatically with a different set of regressor variables.

The results of the significance tests on the coefficients are usually listed in a table such as

Table 2-2. In the P-value column, “tinv” denotes the probability or α-level for the

calculated t0-value. CI stands for confidence interval. The expression for the confidence

intervals of the coefficients bj was already introduced in Chapter 1.1.5.

Table 2-2: Parameter Table for a model with i regressor variables (or p = i+1

parameters) and n observations.

Variable Coefficients Standard

Error

t Statistic

(t0)

P-value or

α for t0

Lower

CI

Upper

CI

Intercept b0

Xj bj [ ]MSE
jj

(X X)' 1−

[ ]
b

MSE

j

jj
(X' X) 1−

=
− −

tinv

n i( , ( ))α 1 [ ]
jjpn

i

MSEt

b
1'

, )( −
−− XXα [ ]

b

t MSE

j

n p
jj

+ −
−

α,
'( )XX 1

2.1.4 Test for Lack of Fit

If replicate measurements are present, i.e., responses based on the same settings for the

independent variables, a test can be performed which gives the significance of the replicate

error in comparison to the model dependent error. In other words, the test splits the

Residual or Error Sum of Squares, SSE, into a contribution from the pure error, which is

based on the replicate measurements, and a fraction which is due to the lack of fit based

on the model performance. Let us assume we have m data points based on different

settings for the independent variables, and rk replicates for a given observation yk. The

total number of data points is then:

n rk
k

m

=
=

∑
1
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The so-called Pure Error Sum of Squares, SSPE, is obtained from the summation of the

squared differences between the r replicate measurements and their average for each

setting and then summing over all the m different settings.

SSPE y ykj k
j

r

k

m

= −
==

∑∑ ( )2

11

                                          Eq. 2-13

SSPE is associated with (n-m) degrees of freedom. The Sum of Squares for Lack of Fit

can be obtained by subtracting SSPE from SSE. It is associated with m-2 degrees of

freedom. Similar to the F-test for significance of the model, the test statistic for lack of fit

is given by

F
SSLOF m
SSPE n m

MSLOF
MSPE0

2
=

−
−

=
/ ( )

/ ( )
                                 Eq. 2-14

If F0 is larger than the critical value Fcrit for a given significance level α with m-2 and n-m

degrees of freedom, the lack of fit error is significant, i.e., there might be contributions in

the regressor-response relationship not accounted for by the model. When performed on a

linear (first order) model, this test indicates curvature if F0 is significant.

2.2 Application: Multiple and Polynomial Regression Main Dialog (I):

Model Term Selection, ANOVA, and Coefficients Table

2.2.1 Overview

In chapter 1.2, we described how to select Polynomial vs. Multiple Regression, how to

pick input and response variables, how to define the order of the regression model (linear,

quadratic etc.) and, finally, how to specify a model with or without intercept. After

completing these steps and clicking Next in the Polynomial or Multiple Regression Input

Dialogs, ER will bring up the Main Dialog (see Figure 2-1).
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Figure 2-1: ER Main Dialog with Model Term Selection, ANOVA, and Coefficients

Table

The Main Dialog is divided into several sections. In this chapter, we will describe the

Input area at the top and the ANOVA and Regression Coefficient Tables, which are part

of the Output Area in the bottom half of the dialog box. The remaining sections deal with

“Model Adequacy Checking”, including Outlier Analysis, and automatic fitting by using

forward selection and backward elimination. These sections will be discussed later in this

book when we talk about how to determine how to arrive at the best possible regression

model and how to assess its reliability. For now, let’s assume that we have picked our

variables and just want to know what the model parameters look like and if the model is

significant. Like in Chapter 1.2., we will go through the features of the Main Dialog in the

chronological order most likely employed by the user.
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2.2.2 Input Area of Main Dialog

Select Term Window

This window contains the terms which can be derived from the independent variables

picked in the Input dialog (i.e., linear, higher order, and interaction terms, according to the

order of regression selected by Type of Regression in the Input Dialog Box). By selecting

terms and clicking the ">" button, terms can be selected for the regression model and will

appear in the Initial Model window.  By clicking the ">" button without selection, terms

are transferred into the Initial Model window in order of their appearance in the Select

Term window. Note that any subset of the model terms which are part of the full model

can be selected.

Initial Model Window

This window contains all the terms which were selected from the Select Term window by

using the ">" button. Terms can be eliminated from the model by selecting them in the

Initial Model window and using the "<" button. Clicking this button without any terms

selected removes the terms from the window in order of their appearance.

Regress Button

Starts the Linear Regression using the model terms in the Initial Model window.
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2.2.3 Output Area of Main Dialog (I): ANOVA Table and Regression

Coefficients Table

ANOVA

Output window for the Analysis of Variance table. This table gives the Regression Sum of

Squares (SS) for the regression model (SSR),  the Residual Sum of Squares for the error

contribution (SSE), and the Total Sum of Squares for the overall variability. In addition, a

percent contribution for the model and the error is calculated. The Mean Square for the

regression model (MSR) and error (MSE, see Chapter 1.1 and 2.1 for a definition of these

terms) are calculated by dividing the Sum of Squares by the respective degrees of freedom

for each term. The MSE is used to calculate the F-statistic (= MSR/MSE). The resulting

model significance is shown in the ANOVA table (F Signif). As described in the previous

chapter 2.1., low values of F Signif indicate a high model significance. A value of .05

indicates a significant model at the 95% significance level. A lack-of-fit test (LOF test) is

performed when replicates are present in the data set and the resulting Pure Error (SSPE)

and Lack-of-Fit (SSLOF) contributions to the Regression Sum of Squares (SSR) as well

as a F statistic for the significance of the LOF are shown in this case. Once a regression is

performed, the current model equation is shown below the ANOVA table.

Regression Coefficients Window

This is the window at the bottom of the output area of the Main Dialog. It shows the

terms (variables) used in the model and their regression coefficients with standard errors,

t-statistic, and significance level for each coefficient. Another column shows the variance

inflation factors (VIFs). We are going to talk about these in detail in Chapter 3. Each list

box showing a specific parameter list can be scrolled independently. However, when a

specific row is highlighted in a list box, the corresponding rows in the remaining list boxes

will be highlighted automatically. This setup allows for more flexibility when dealing with

parameter lists which are longer than the window area.



45

3. Regression Diagnostics and Model Adequacy Checking

3.1 Theoretical Background

3.1.1 Overview

The previous Chapter described how we can determine if a regression model and the

individual regression coefficients are significant at the level we deem appropriate (90% or

.1, 95% or .05 etc.). However, we still have to figure out if this model actually describes

our data adequately. How good is the “fit” of the predicted data compared to the “real

data”? Are there differences between fitted and experimental data which are larger or

smaller than expected?  How “good” are the “real data”, anyway?. Are there data points

which we have to discard because they might be erroneous? Are there data points which

might have an unusually strong influence on the regression results ? These questions are

behind what is commonly called Model Adequacy Checking.

3.1.2 Coefficients of Multiple Determination for Intercept Models

Everybody who has ever performed a simple Linear Regression, maybe only as a straight

line fit, knows that there are parameters called R (correlation coefficient) or R2 which

somehow describe the quality of the fit. Most people consider these parameters as most

important in assessing the quality of a regression model. This chapter will show that we

have to be very careful in relying exclusively on these parameters when evaluating a

regression model.

R2, the coefficient of determination in Simple Linear Regression is called coefficient of

multiple determination in Multiple Linear Regression. It is defined by the ratio of the

Regression Sum of Squares (SSR) over the Total Sum of Squares (Syy) or, which is

equivalent, by one minus the ratio of the Error Sum of Squares (SSE) over the Total Sum

of Squares (Syy):
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R
SSR
S

SSE
Syy yy

2 1= = −                                                   Eq. 3-1

Eq. 3-1 explains why R2 can only range between 0 and 1. One can think of R2 as the

fraction of total variability in the data (Syy) explained by the regression model (SSR).

Sometimes (R2*100) is called the percentage of total variability explained by the model. R2

can also be described as an indicator of the proportion of variability around the average of

the observed responses. However a R2 value close to unity does not necessarily guarantee

a good model. On has to keep in mind that adding a regressor variable always increases R2

due to the increase in SSR. For instance, when performing a curve fit of scientific data

using a polynomial model, it is always possible to increase the R2 by adding higher order

terms. Ultimately, this leads to a very complicated fitted curve which basically just

connects the dots in our graph. This does not mean that this “model” has any real

significance. Such a model with a very impressive R2 close to 1 might perform very poorly

in predicting new data. This is what is called an overfitted model.

The square root of R2 is the multiple correlation coefficient between the response, y, and

the regressor variables in the model. In linear curve fitting, the correlation coefficient R

between between y and x can range between -1 and +1 corresponding to a negative or

positive slope of x versus y. In Multiple Linear Regression, R equals the correlation

coefficient between the observed responses and the predicted responses and ranges from 0

to 1. To visualize the “quality of the fit” of a regression model, sometimes a plot of

observed vs. predicted responses is used with a fitted straight line giving the correlation

coefficient R or R2. Keep in mind, however, that this does not give any information about

the adequacy and predictive power of a model.

By taking into account the degrees of freedom in the model, we can define a so-called

adjusted coefficient of determination or R2
adjusted. Whereas the ordinary R2 always

increases or at least stays constant when adding new model terms, R2
adjusted can actually

decrease, thus giving an indication if a new coefficient actually improves the model or

might lead to overfitting:
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R
MSE

S n
SSE n p
S n

n
n p

Radj
yy yy
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1

1
1

1
1
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−
−

−
/ ( )

/ ( )

/ ( )

( )

( )
( )                  Eq. 3-2

As defined in Chapters 1 and 2, n denotes the number of data points, p = k+1 stands for

the number of parameters in the model including the intercept (k = number of regressors).

The difference (n-p) decreases when a new regressor is added. This means that, for the

new model, SSE has to decrease correspondingly for MSE to become smaller. Only in this

case, R2
adj increases. When evaluating a regression model, R2 and R2

adj should be

compared. If they differ substantially, the model could be overfitted.

3.1.3 Coefficients of Multiple Determination for No-Intercept Models

Generally, R2 should not be used to compare intercept and no-intercept models. For a

model without an intercept, R2 as defined in 3.1.2 describes the proportion of variability

around the origin which can be explained by the regression model. This value can be larger

in an intercept-free model than in a model with intercept even though the Mean Square for

the Error (MSE) is smaller for the intercept model. Suffice it to say that the MSE

(sometimes called RMS Error) is the more appropriate parameter for a comparison

between intercept and no-intercept regression models.

3.1.4 Residuals, Standardized Residuals and Outliers

In Linear Regression, the difference between an observed response for a given data point,

yk, and the predicted response, yk(est), is called residual. We have already shown in the

previous chapters that the sum of the squared errors, which in fact is the sum of the

squared residuals, divided by the error degrees of freedom gives MSE, the Mean Square

Error for the regression model. But the significance of the residuals does not only lie in

this calculation. After calculating a model, a thorough analysis of the residuals is very

important to evaluate the adequacy of the regression. The most commonly used methods

in residual analysis are:

1. Normal Probability Plots of the Residuals.

2. Plots of the Residuals vs. the Predicted Responses.
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3. Outlier Analysis using threshold or cut off values.

From Chapter 1, we know that one of the assumptions of Linear Regression is that the

errors or residuals are normally distributed. This can be checked by plotting the residuals

in a so-called normal probability plot. This can be done manually with normal probability

paper by plotting the individual residuals e1 …ek , ranked in increasing order, against the

cumulative probability Pk = (k-1/2)/n. In a computer program such as ER, the ranked

residuals are plotted against the expected normal value or rankit, which is equal to the

inverse of the normal cumulative distribution for a given cumulative probability Pk. In such

a plot, the points should form a straight line if the residuals are perfectly normally

distributed. In reality, the plot is usually slightly s-shaped, which can be tolerated if the

deviation from linearity is not too bad. A pronounced s-shape, however, indicates a

distribution with heavy “tails”, i.e. the residuals should be inspected for outliers.

In addition to inspecting the normal probability plots of residuals, it is helpful to plot the

residuals versus the predicted responses. If the residuals are not correlated with the value

of the predicted response, than this plot should look like a horizontal band on both sides of

the expected average for the residuals, zero. If the pattern looks dramatically different, it

indicates that the error variance is not constant and depends on the response. Usually,

transformations in the regressors or the response are employed to correct this model

inadequacy. The shape of the residual vs. predicted response plot can indicate which

transformation of the response y could improve the model. For example, if the variance of

the residuals increases proportionally with the estimated responses, the plot looks like a

“funnel” becoming wider at higher values of the estimated response. In this case a

transformation of y to the square root √y could improve the model.

When performing residual analysis, it is sometimes convenient to inspect the standardized

residuals rather than the raw residuals. Standardized residuals are obtained by dividing the
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residuals by their “standard deviation”, or the square root of MSE, also called the

standard error of the regression (see also Chapter 1).

d
e

MSE
k

k=                                                        Eq. 3-3

This scales the residuals in units of the standard error, which can be used to define

threshold values for outliers, i.e., residuals which are so large that they indicate that either

the model or the response for the respective data point is erroneous. A cut off value of  3

standard errors is commonly used to distinguish outliers among standardized residuals.

For smaller data sets, so-called studentized residuals are more appropriate for residual

analysis. Studentized residuals are obtained by dividing the residuals by their exact

standard error, rather than the averaged standard error as in Eq. 3-3. The kth diagonal

element of the hat matrix (see Chapter 1), hkk , where i denotes the kth data point, can be

used to calculate the studentized residuals:

r
e

MSE h
k

k

kk

=
−( )1

                                                  Eq. 3-4

Since variances of residuals of remote data points tend to be smaller, the studentized

residual of a data point which is outside the bulk of the data tends to become larger.

Remote data points sometimes can affect the fit significantly, especially in small data sets.

They become influential points. Hence, besides indicating outliers similar to the

standardized residuals, studentized residuals help detect these influential points.

Influential points can generally be defined as cases which affect the model coefficients

dramatically. Therefore, it is interesting to perform the regression without a given data

point and determine, if the new model with n-1 cases is able to predict the withheld

observation. This idea is the basis for the calculation of the prediction error sum of

squares (PRESS) and the PRESS residuals . PRESS residuals (e(k)), sometimes called

deleted residuals, are defined by



50

e
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=
−1

                                                    Eq. 3-5

Again, hkk denotes the kth diagonal element of the hat matrix. Residuals from data points

with large values for hkk will have large PRESS residuals and will be influential. If, for a

data point, the difference between the raw residual and the press residual is large, the

underlying model with this data point will exhibit a good fit, but the model without this

point will predict this response poorly.

Based on the PRESS residuals defined above, another type of residual is sometimes used

to detect outliers and influential points. It is called R student or externally studentized

residual. It is calculated by scaling the residual according to the variance S(k)
2 which is

obtained when fitting the data without the respective data point (that is why it is called

externally studentized):

S
n p MSE e h

n pk
k kk

( )

( ) / ( )2
2 1

1
=

− − −
− −

                                            Eq. 3-6

t
e

S h
k

k

k kk

=
−( ) ( )2 1

                                                             Eq. 3-7

R student and studentized residuals will be equivalent if S(k)
2 and MSE are similar in value.

With influential points, however, these two variances will differ dramatically, and R

student will become more sensitive in these cases.

Potentially influential points can be detected by inspecting the value of the respective hat

matrix diagonal element, hkk. This value depends on the location of the respective data

point in the space defined by the regressor variables. A high value of hkk indicates a

potentially influential, remote location in x-space. A cutoff value of 2p/n (p = number of

parameters in the model, n = number of data points) can be used to detect potentially

influential or leverage points.
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Another statistic measures the squared distance between the estimated response for a

given data point based on all data points and the response obtained after deleting the

respective case. It is called Cook’s Distance and defined by

D
r

p

h

hk
k kk

kk

=
−

2

1( )
                                                        Eq. 3-8

Since Dk contains the product of the squared studentized residual and the term hkk/(1-hkk),

it is affected by the fit of the model and the distance of the data point from the rest of the

data. Points for which Dk >1 are usually considered influential.

The parameter DFBETAS can be used to determine the influence of a data point on the

individual regression coefficients of the model. Consequently, as many DFBETAS as there

are coefficients in the model have to be calculated for each case .

DFBETAS
r tk

hj k
jk

kk
, ( )

=
−r 'rj j

1
                                             Eq. 3-9

The vector r’j is the jth row of the p×n matrix R which is derived from the X matrix of the

regressors:

R (X'X) X'1= −                                                     Eq. 3-10

As in Chapter 1, the index j denotes the coefficient, k stands for the kth datapoint. For the

constant term, j=0. A cutoff value of 2√(n) can be used to determine observations which

are influential for a given coefficient.

Another statistic, called DFFITS, has been defined to detect the influence of an

observation on the fitted or predicted response:

DFFITS
h
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                                                  Eq. 3-11

A commonly used cutoff value is 2√(p/n). Points with larger DFFITS have a considerable

effect on the fitted values.
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Finally, there is a term which is used to describe the influence of an observation on the

precision of the observation. It is called COVRATIO and defined by:

COVRATIO
S

MSE hk
k

p

kk
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





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( )
2

1

1
                                         Eq. 3-12

A high leverage data point will lead to a high value for COVRATIO, unless this point is an

outlier. If COVRATIOk for an observation yk is greater than 1, the data point will improve

the precision of the model, if COVRATIO is smaller than 1, the inclusion of this data point

led to a decrease of precision.

3.1.5 R2 for Prediction, Precision Index and Coefficient of Variation

In the previous chapter, we defined the PRESS residual.  The sum of the squared PRESS

residuals is the Prediction Error Sum of Squares or PRESS:
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e
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                                            Eq. 3-13

PRESS is calculated from residuals which are based on a regression model with one data

point removed. Thus, it can be used to calculate an approximate R2, which indicates the

predictive power of the model. Analogous to R2, the R2 for Prediction is defined by:

R
PRESS

Sprediction
yy

2 1= −                                                Eq. 3-14

So, R2, adjusted R2, and R2 for Prediction together are very convenient to get a quick

impression of the overall fit of the model and the predictive power based on one data point

removed. In a good model, these three parameters should not be too different from each

other. However, for small data sets, it is very likely that every data point is influential. In

these cases, a high value for R2 for prediction cannot be expected. This reflects the fact

that robust model equations are not very likely based on only a few data points. This does
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not mean the calculated model is not adequate for the data, but it highlights that predictive

models need a more extensive data base to predict with a reasonable statistical confidence.

The Pure Error Sum of Squares (SSPE) we described earlier in connection with the lack

of fit test can be considered an estimate for the model independent error variance. This

makes it possible to compute an expression for the potential predictive performance of the

regression model by comparing the range of the fitted responses to their average standard

error. In ER, we defined a precision index obtained by calculating the ratio between the

range of fitted or predicted responses and the average standard error derived from SSPE:

n
pSSPE

yy estnaxest min,,=IndexPrecision 
−

                                       Eq. 3-15

The larger the precision index the more satisfactory the underlying model can be expected

to perform when predicting new values. A low precision index close to 1 indicates that the

predicted variablity in the responses is only of the order of magnitude of the replicate

measurement error.

Finally, the unexplained variability in the data, given by the standard error of regression or

the square root of MSE can be compared to the average response. This ratio times 100 is

called coefficient of variation (C.V.).

C V
MSE
y

. . *= 100                                              Eq. 3-16

Clearly, a small value for C.V. is obtained if the fit is good, i.e., MSE is small.

3.1.6 Tests for Multicollinearity, Variance Inflation Factors

We mentioned in Chapter 1 that, ideally, the independent variables in a regression model

are orthogonal, i.e., there exists no linear relationship among them. In real life this is not

easy to accomplish. Sometimes there are “hidden” relationships between regressor

variables. In the case of polynomial models and higher order regression models they are



54

obvious. Linear or near linear relationships between regressor variables can cause a

problem called multicollinearity.

Multicollinearity can have severe effects on the estimation of the least-squares regression

coefficients. The estimates can become unstable due to an increase in the variances of the

coefficients, and the model can become inadequate.

A simple test for multicollinearity is the inspection of the X’X matrix of the regressors in

correlation form. When applying unit length scaling to the regressors (see equation 1-7),

the X’X matrix shows main diagonals of 1 and off-diagonals rij equal to the correlation

between the  regressors xi and xj (one of the add-ins which come with MS Excel allows

the user to create this correlation matrix of the regressors). If the regressors are linearly

independent, the correlation between the regressors should be close to zero. The

determinant of the correlation matrix can assume values from 0 to 1. If the value is 1, than

the regressors are perfectly orthogonal, if the value is 0, there exists an exact linear

relationship among them. In addition to the correlation matrix, the value of the

determinant is given in ER as a “correlation parameter”.

The inverse of the X’X  matrix in correlation form,[X’X]-1, offers another possibility to

check for multicollinearity. The diagonal elements of this matrix give an indication for the

combined effect of the dependencies among the regressors on the variance of the given

regression coefficient. They are called variance inflation factors (VIFs). Large VIFs (>10)

indicate that the estimate for the respective coefficient could be severely affected by linear

dependencies of the regressor.

3.1.7 Autocorrelation

In Linear Regression, we assume that the errors are uncorrelated with respect to the time

sequence of the corresponding experiments or data points. Well-defined time intervals for

experiments are used for so-called time-series data. Uncorrelated errors imply that the

value of any error term has no effect on the value of the neighboring error terms when
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arranged by their sequential order over time. A serial correlation of the errors is called

autocorrelation. Autocorrelation affects the variance of the least-squares estimates and

may lead to an underestimation of MSE and confidence intervals. In hypothesis testing, it

could lead to erroneous results indicating a false significance of regressors.

Residual plots vs. time can be helpful in detecting autocorrelation among errors. If the

errors increase or decrease steadily with time, so that we find clusters of residuals with the

same sign, we speak of positive autocorrelation. Negative autocorrelation, on the other

hand, leads to residuals alternating in sign too rapidly when plotted vs. time.

A more systematic approach to detecting autocorrelation is based on the assumption that

the errors or residuals are correlated via a linear or first-order relationship such as Eq. 3-

17 (t = index for time).

e e at t= +−ρ 1 1                                                               Eq. 3-17

For uncorrelated errors, we expect that the parameter ρ equals zero. Positively

autocorrelated errors should give a positive value for ρ and vice versa. An estimate of this

autocorrelation parameter is simply the slope of the linear regression line through the

residuals (errors) sorted in time order. It can be used to transform the original regressor

and response variables in order to eliminate the effects of autocorrelation:

x x xt t t
' = − −ρ 1

y y yt t t
' = − −ρ 1

The Durbin-Watson test is most often used to determine if there exists positive

autocorrelation via hypothesis testing. A test statistic is used to determine if ρ in Eq. 3-16

is zero or significantly larger than zero. The Durbin-Watson parameter is defined by
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.Similar to the F- and t-statistic, threshold or cut-off values for d depend on the degrees of

freedom, i.e., the number of data points and number of model terms. For each data set,

there exists two bounds for d (dL = lower bound, dU = upper bound). If d lies in between

these bounds, the test is inconclusive. However, d < dL, indicates autocorrelation, d > dU

indicates no autocorrelation. Tables giving boundary values d depending on probability

level and degrees of freedom are available. As a rule of thumb, values of 1.5 and 2.5 can

be used as lower and upper cutoffs in many cases.
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Table 3-1: selected critical values of d as given by Durbin and Watson

n 1 regressor 2 regressors 3 regressors

lower upper lower upper lower upper

15 .08 1.36 .95 1.54 .821 .75

20 1.20 1.41 1.10 1.54 1.00 1.68

25 1.20 1.45 1.21 1.55 1.12 1.66

50 1.50 1.59 1.46 1.63 1.42 1.67

100 1.65 1.69 1.63 1.72 1.61 1.74

(one-sided probability level of .05 (95%), excluding the intercept) (J. Durbin and G. S. Watson,

Biometrika, Vol. 38, 1951)

3.2 Application: Multiple and Polynomial Regression Main Dialog (II):

Regression Summary, Residual Analysis, Outlier Analysis, and

VIFs

3.2.1 Output Area of Main Dialog (II): Summary of Regression and VIFs

After performing a regression, the summary area contains a list of the parameters

described in detail in the previous chapter (see also Fig. 2-4). In addition to the ANOVA

table and the regression coefficients window, which give indications for the significance of

the model and the parameters, this list allows the user to get a quick overview of the

quality of the fit and the predictive power of the model. For a theoretical introduction of

the parameters listed, see the previous chapter.
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Figure 3-1: Main Dialog, Output Summary and VIF table are highlighted

Previous

This button opens a window which shows the summary results of the previous model,

which is convenient when comparing a new model to the previous one and gives important

clues when comparing results in a stepwise regression analysis.

VIFs

VIFs, which measure multicollinearity, can be found in the last column of the regression

coefficients window at the bottom of the output area of the Main Dialog. As mentioned

before, large VIFs (>10) indicate multicollinearity among the regressors.

3.2.2 Outlier Button

The outlier button opens a dialog box which, after performing a regression, gives a

convenient overview of a residual analysis based on the regression model used. Listed are,
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if present, standard residual outliers (absolute standard residual >3), potentially influential

leverage points (diagonal element of the hat matrix, hkk, >2p/n), and potentially influential

observations or cases based on Cook’s distance D (D>1). A detailed tabular and graphical

residual and outlier analysis using all data points is possible after creating the XLS output

sheet containing the complete Essential Regression analysis by using the Make XLS button

(see Chapter 5.3).

3.2.3 Response Transformation in Essential Regression

As described in  Chapter 3.1.4 about residuals, a response transformation can be useful to

stabilize the variance of the model. Essential Regression supplies the user with a selection

of possible response or y transformations. The Y Transformation drop-down list box

contains the following options:

• None no tranformation (default)

• ln(y) uses the natural logarithm (ln) of y in the analysis

• 1/y uses the reciprocal value of y

• exp(y) uses the expression ey

• sqrt(y) uses the square root of y

• center centers the response (see Chapter 1.1.2)

• standardize standardizes the response (see Chapter 1.1.2)

 

 When selected, the response will be transformed before performing the regression analysis.

The original data in the spreadsheet, however, will remain untouched. Note, however, that

logarithmic and square root transformations cannot be performed on negative numbers,

and the exponential transformation cannot be used with very large numbers.

 

3.2.4 Graphs button

 The Graphs button opens another dialog which shows a variety of scatter plots useful for

graphical residual analysis. After performimg a regression analysis, this complements the
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tabular residual and outlier analysis performed when pressing the Outlier button. The

following graphs for residual analysis and model adequacy checking are included:

 

• predicted vs. observed response

• raw residuals vs. predicted response

• standardized residuals vs. predicted response

• studentized residuals vs. predicted response

• expected normal value (rankit) vs. raw residuals

• expected normal value (rankit) vs. standardized residuals

• expected normal value (rankit) vs. studentized residuals

• response vs. individual regressors

• response vs. observation  or case (to detect trends over time)

• raw residuals vs. observation or case

The dialog showing the graphs contains  then following buttons:

<<Graph n of m >> buttons

Scrolls back and forth through the selection of graphs. The total number m of graphs

varies with the number of terms (regressors) in the model

Add Trendline and Remove Trendline button

The user can add a regression line to the graphs to visualize possible trends in the plotted

data.

Exit

Pressing this button takes us back to the Main Dialog (this button does not quit ER!)

The dialog shown after pressing the Graphs button is for visual inspection only. The

options of Essential Regression which allow the user to generate editable , storable, and

printable output are described in Chapter 5 of this book.
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4. Model Optimization

4.1 Theoretical Background

4.1.1 The Problem of Finding the Best Regression Model

Quite often, we do not really know how many of a given pool of potential factors are

really significant contributors to an effect or response. Also, there might be interactions

and/or higher order effects we have to consider. Also, “real world” data can be

inconsistent and saturated with outliers leading to misspecified, unrealistic regression

models. Normally, when in doubt, we start out by including all the possible regressors into

the model equation. We might end up with a regression model that contains all of our

potential input candidates, but our nonstatistical intuition and a look at the model

adequacy tests tell us more or less instantly that something is wrong. Usually, the model

shows a very good fit as judged by the R2. However, the adjusted R2 and the MSE are

quite likely to cause concern. Also, some of the regression coefficents might be

characterized by low significance (high P-values, see Chapter 2.1.3). What we need is a

technique to select a reasonable subset of variables and/or their interactions in order to

arrive at a model which is satisfactory. “Satisfactory” usually means that the “fit”, i.e., the

R2 can be lower than in the full model, but the significance of the remaining factors in the

model, the adjusted R2, the R2 for prediction and the MSE are lower in the “optimized”

model. What we try to achieve is a trade-off between accuracy when reproducing the

historical data and predictability or reliability when applying the model to new data.

Technically, when selecting a subset of potential regressors for an optimized model we

introduce bias into our coefficient estimates. This is one of the main reasons why all

methods for finding optimized regression models are somewhat controversial and, more

importantly, they cannot guarantee us to yield the one best model. However, when

keeping unnecessary variables in the model, we might actually end up with a higher
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variance of the coefficient estimates or the predictions even though the estimates are

unbiased. So, what we have to do is to find the model which reduces the variance more

than increasing it due to the bias introduced by selecting a subset of variables.

4.1.2 Performing All Possible Regressions and Criteria For Finding the Best

Model

The original set of statistical methods implemented in the Analysis Toolpak of Microsoft

Excel  does not contain automated methods for optimizing regression model equations.

Instead, the user has to “optimize” the model by more or less randomly picking variables

and trying to find a better model by trial and error. Or, one has to calculate all possible

regression models to pick out the best.  This can be quite tedious when there is a plethora

of potential regression variables, especially if one has to do this manually, one model at a

time, in Excel. But what are the criteria for the “best model”? One popular method uses

the Coefficient of Multiple Determination, R2, to assess the “fit” of a model equation.

However, usually, this value tends to get greater with the addition of more variables,

irrespective of the significance of the variable added to the model. For a given number of

variables, however, the R2 can be used to determine the best among this subset of  model

equations. When comparing models with different numbers of variables, the adjusted R2

(see Chapter 3.1.2) is more meaningful. This parameter can grow even if the number of

variables decreases! In other words, the “best” model would be the one with the highest

adjusted R2! This is, by the way, equivalent to looking for the model with the lowest MSE

(Mean Square Error, see Chapter 1.1.4). When comparing models with similar adjusted R2

and MSE values, it can be helpful to take a look at the R2 for Prediction (see Chapter

3.1.5).

In Essential Regression, the user can perform a quick scan of all possible regression

models containing no more than 5 regressors to compare their R2 and adjusted R2 values.

This automated feature is a welcome addition to the methods for variable selection

described in the following chapters.
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4.1.3 Stepwise Regression: Forward Selection of Variables

Sometimes, our intuition is a good starting point when selecting the more relevant

variables from a pool of candidate regressors. However, there are standardized techniques

available which use specified criteria for telling us if a new model is actually better than the

previous one. In Essential Regression, we implemented Forward Selection, Backward

Elimination, and the combination of both, which we called “Automatic Model

Optimization” or “AutoFit”. We think this is one of the most welcome features of

Essential Regression adding a substantial amount of convenience to the Multiple

Regression analysis.

When applying the Forward Selection method, we start out with a model containing no

regressors beside the intercept. New regressors are added to the model one at a time and

the F-statistic introduced in Chapter 2.1.2 is used to decide if the additional regressor

variable actually improves the model. In other words, the first regressor variable we pick is

the one leading to the highest F-value when testing the significance of the regression

model using only one regressor and the intercept (see Chapter 2.1.2).  Stepwise

Regression methods use a threshold value for the lowest possible F, usually called Fin  (or

the highest corresponding probability value, Pin) which determines if any regressor is

deemed significant enough to start building a model. The next regressor which is added is

the one which gives the highest partial F-statistic or, in other words, which shows the

highest partial correlation with the response after accounting for the effects of the other

variables already in the model. If the model already contains the variable x1 , and x2 is the

new regressor, the partial F-statistic used to find the next variable can be expressed as



64

F
SSR x x b SSR x b

MSE x x b
=

−( , , ) ( , )

( , , )
1 2 0 1 0

1 2 0

                             Eq. 4-1

where SSR stands for the Regression Sum of Squares, MSE is the Mean Square Error,

and b0 denotes the intercept. If there is no regressor which would exceeds the predefined

Fin, the Forward Selection procedure stops.

4.1.4 Stepwise Regression: Backward Elimination of Variables

The reader will learn with only a mild surprise that Backward Elimination works in the

opposite direction of Forward Selection. We start with a model possibly loaded with

redundant regressor variables and try to strip it down to the really meaningful core.

Actually, this is the approach which is more widely used because it allows the analyst to

get an idea of the quality of the most comprehensive model before removing variables. In

surface response modeling, quite often the models with quadratic terms and with or

without interactions between linear terms are used as a starting point. The selection

criteria for removing or eliminating a variable is the partial F-statistic, as in Forward

Selection. However, now a Fout-value is defined indicating the threshold F-value below

which a regressor can be eliminated.

4.1.5 Automatic Model Optimization

If a large number of potential regressors is in our “pool of candidates”, there is also a large

number of possible regression models. Proceeding through the Stepwise Regression

process in only one direction (forward or backward) does not necessarily give us the same

answer. Regressors which are important at the point when we add them to the model

might actually become insignificant when more regressors are added, and a variable

removed from the model might have become much more significant at a later point had we

left it in the model. There are bifurcations in the paths leading to an endpoint in the

Stepwise Regression methods which might lead to better end results, but we can’t know

unless we go back and choose a different route. Fortunately there is a method available

which combines both the Forward and Backward techniques of Stepwise Regression. This



65

method is sometimes referred to as Stepwise Regression. In Essential Regression, we

called it Autofitting because it allows us to step through the process of finding a subset

model from a selection of regression models almost  “automatically”. This is done by

adding a new variable according to the Forward Selection method and by then

reevaluating the variables already in the model using the partial F-statistic described

prevously. When necessary, one of the variables is then removed via Backward

Elimination. Obviously, two threshold F-values (Fin ans Fout) or the corresponding P-values

have to be defined in order to follow this procedure. They do not necessarily have to be

the same values. In fact, Fin is usually greater than Fout to make it more difficult to add

another variable to the model.

Who ever had to go through the tedious phase of selecting a good model when many

regressors are present will appreciate the advantages offered by an “automated” selection

process. However, care has to be taken in making sure that the result is really meaningful.

In other words, maintain caution when using the Stepwise Regression procedures and do

not accept physically meaningless model equations just because they mathematically are

the optimum of the Autofitting process.

4.1.6 Transformation of the Response

We mentioned the transformation of the response variable, y, in Chapters 3.1.2 and 3.1.4

in connection with residuals and outliers (Chapter 3.1.4). As described there, sometimes a

pattern in the plot of the residuals vs. the response variable indicates that the error

variance is not constant and depends on the response. Model inadequacies such as these

can lead to inadequate models even after performing a thorough Stepwise Regression .

Transformations of the response can be employed to find a new “starting point” for the

Stepwise Regression.
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4.2 Application: Multiple and Polynomial Regression Main Dialog (III):

AutoRegress Area

4.2.1 Overview

The AutoRegress area can be found in the upper right hand corner of

the Multiple and Polynomial Regression Main Dialogs. We assume the

user has selected potential regressor variables and a response in the

Input Dialog and has continued to the Main Dialog. All possible

variables are listed in the Select Term list box of the Input Area. In

order to find an optimized model, the user can now apply Forward

Selection, Backward Elimination, Autofitting and or Response

Transformation. The subsequent paragraphs describe the functionality

behind the buttons in the AutoRegress area.

4.2.2 Perform All Possible Regressions

Fit All button

After  pressing this button, Essential Regression will ask the user to specify the maximum

number of regressors to include. Depending on the number of model terms, the maximum

number of models can be quite large (hundreds or more). The program will then calculate

the R2 and adjusted R2 values of all possible model equations based on the variables listed

in the Select Term list box. A new Excel worksheet will be generated with a sorted list of

the models and  parameters.

4.2.3 Stepwise Regression in Essential Regression

Critical Significance Spinners

This allows the user to predefine the threshold values of the critical significance for

Forward Selection and Backward Elimination which correspond to the Fin and Fout values

Figure 4-1:

AutoRegress

Area
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described in the previous chapter. Remember, however, that the lower the P-values, the

more significant the regressor, and lower critical significance values mean that it becomes

more difficult to enter or delete a regressor variable to or from the model. By default,

values for the critical significance of 0.1 for both the Forward and Backward step are

preselected. However, these values do not have to be the same.

>Forward> button

By pressing this button, a Forward Selection step will be performed based on the

predefined critical significance. The “>>” button to the right of this button performs a

continuous Forward Selection procedure until there is no regressor left which falls below

the critical significance value. To start the Forward Selection, no variable needs to be

selected, i.e., listed in the Current Model list box.

<Backward Elimination< button

Performs a Backward Elimination step based on the predefined critical significance. The

“<<” button to the right of this button performs a continuous Backward Elimination

procedure until there is no regressor left which exceeds the critical significance value. To

start the Backward Elimination, variables need to be selected, i.e., listed in the Current

Model list box. Usually, one uses the full model to start with a Backward Elimination.

AutoFit Button

Starts the automated selection of the “best” model using repeated Forward and Backward

Stepwise Regression until no further  improvement can be detected. Note that the

currently evaluated regressor variable is indicated in the Excel status bar. When this

procedure starts, all regressor variables are removed from the Current Model list box. If

successful, a message “Autofit converged!” will indicate that the procedure has

terminated.

If Essential Regression cannot find any variable to add or delete, a message box will come

up indicating this result to the user. If either the stepwise or the continuous procedures are
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successful, the new model will be displayed in the Summary, the ANOVA table, and the

regression coefficients window in the Main Dialog.

All Transforms Button

This button allows the user to quickly perform a series of regression analyses based on the

current variables in the model and using all of the response or y transformations given in

the Y Trans drop-down list box (see also Chapter 3.1.4). This is useful to decide which y

transformation could be a good starting point for a Stepwise Regression. Essential

Regression will come up with a dialog window showing the R2 values of all

transformations and will indicate the best model. After confirming the dialog, the selected

model will be displayed in the Main Dialog.

Figure 4-2: Result of analysis of all possible y transformations

5. Essential Regression Output

5.1 Graphical Evaluation of Residuals

In Chapter 3, we already have discussed the mathematical foundation of residuals and

outliers and the benefits of both tabular and graphical  residual analysis when assessing the

quality of our regression model. However, since this part of the book deals especially with



69

the graphical and tabular output capabilities of ER, we are going to explain in more detail

the most important aspects of using graphs in model adequacy checking. This section

complements sections of  Chapters 3.1.4 and 3.2.3, and the less-experienced user is well-

advised to read those first.

The figure below shows a typical Normal Probability Plot of the Expected Normal Values

(Rankit) vs. the Residuals. Plots like this are extremely important when trying to decide if

the “error structure” behaves as expected, i.e., if the errors are distributed normally. If

they are, the residuals will fall on a straight line. If the residual plot is pronouncedly S-

shaped, with both ends turning away from the straight line, the error distribution is said to

be “heavy-tailed”. In this case, an outlier analysis becomes important, and the tables of  the

parameters introduced in Chapter 3.1.4. (Residuals, Cook’s Distance, etc.) have to be

studies for cases exceeding the threshold values.

Expected Normal Value (Rankits) vs. Residuals
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Figure 5-1: Normal Probability Plot of Rankits vs. Residuals

When trying to find outliers or explain unusual residuals, it can be useful to simply plot the

residuals vs. the cases sorted by the case number. This is of importance when the cases

(observations, experiments) are sorted by time, for instance, and can help find hidden
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trends in the residuals or simply “bad” results. In the next Figure, for example, a possible

trend in the residuals can be detected.

Residuals vs. Case
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Figure 5-2: Plot of residuals vs. case with a possible trend (indicated by line).

As we mentioned in Chapter 3, the residuals or errors should not correlate with the

response. When plotting the residuals vs. the expected or predicted response, they should

form a band around 0 with a constant width, i.e., the variance should be stable with

respect to the predicted response. If there is a different pattern is this plot, it can help us to

find a transformation for the regressor variables or the response leading to a better model,

i.e., a regression model with a stable residual variance.

The following plots of residuals vs. expected (predicted) response show a few of the

patterns which can occur. The first two plots show typical “funnel” patterns indicating that

the error variance increases or decreases with increasing y predicted. The double-bow

pattern in the next graph can occur when the predicted y is a proportion between 0 and 1.

The U-shape in the last graph indicates nonlinearity. In this case, other regressors or
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higher-order-terms might have to be included in the model. The y transformation which

might help stabilizing the variance is shown in each graph.
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Figure 5-3: Patterns in residuals vs. predicted response plots and possible

transformations to stabilize the variance
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5.2 Predicting Observations

The reason for developing a regression model is not only to fit historical data, but also to

be able to predict future observations. A good regression model should enable us to do so.

However, in Chapter 1 we already introduced  the concept of confidence intervals and

uncertainty with respect to predictions. When calculating predicted responses, we must

not forget that there is a confidence range associated with each prediction. We have to

say, for example: “The predicted response will be y plus/minus the confidence range at the

given probability level”.

The reader might recall that there are different equations used for the confidence limits for

the mean response and the confidence limit for new observations (see Equations 1-28 and

1-29). The first is used when the mean response for a series of experiments or cases at a

given data point within the range of the historical data has to be calculated. The second

equation gives the confidence limit for a single new observation within or outside the

range of historical data. This confidence range is wider to reflect the increased uncertainty

associated with the prediction of a single response.

Also, both confidence limits vary with the location of the data point in x-space, i.e., the

range of the regressor variables. The intervals have a minimum at the center of this range.

The more the data point is located at the periphery of the range of the data used to

generate the model, the wider the confidence limit, i.e., the more uncertain the prediction.

One can see that clearly in Figure 5-4 for the case of  Simple Linear Regression (only one

regressor plus intercept). In cases where we exceed the range of original data, we actually

perform an extrapolation. A model that fits well within the range of original data might

perform badly when extrapolating! Unless there is sound physical evidence for the validity

of our model outside the range of original data, every extrapolation outside the range of

original data is inherently unreliable!

When only one or two variables are in the model, it is relatively easy to determine if a

given prediction constitutes an extrapolation. However, for more complicated models we
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can calculate  the expression x'(X'X) x1−  which was used to determine the confidence

limits (Equations 1-28 and 1-29). If this value for a given setting exceeds the range of the

hat matrix diagonals (see Chapter 3) in our historical data set, we perform an

extrapolation. This calculation is done in Essential Regression automatically every time we

predict a new response.
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Figure 5-4: Typical plot of the predicted y and the Confidence Interval for the Mean

Response at 95% significance level vs. the regressor, X.

5.3 Application: Essential Regression XLS Output Worksheet

5.3.1 Make XLS Button-Overview

So far, we have described the features of Essential Regression which allow the user to

quickly get an impression of the quality of the regression model by producing dialog and

message boxes, showing the parameters important for model adequacy checking in a

summarizing fashion. All these features, however, produce only temporary results which

change when a new model equation is chosen. To obtain a permanent and also more
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detailed output after a regression analysis in complete, the user has to press the Make XLS

button in the Main Dialog. This starts a procedure which creates another Excel-

worksheet (XLS-sheet) in the currently active workbook containing the data. This new

output sheet contains all the information already discussed in connection with the main

dialog and, in addition more detailed tables and extended graphical features including

surface- and contour plots for models with two or more regressors. When the output sheet

is generated, the following message appears:

Figure 5-5: ‘Worksheet Created’ Message after pressing the Make XLS button

Note that the modified workbook still needs to be saved to make the changes permanent!

By default, the new output worksheet generated by

Essential Regression is named Sheet name of data

sheet_Rn, with n counting the output sheets already

generated from the data sheet.

The output sheet consists of several areas separated

from each other and containing the information

described in detail further below. A series of buttons

in the top rows of the “A” column of  the

spreadsheet allow the user to jump to specified

output areas and back. Keep in mind that all the

areas are on this one spreadsheet. Every area

contains a Back button which allows the user to

jump back to the starting point on the spreadsheet.
Figure 5-6: Buttons in XLS sheet
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This worksheet created after pressing Make XLS is a normal Excel spreadsheet! This

means, the user can copy, edit and print any area on this sheet! However, moving around

the different areas can obviously affect the buttons which take the user to these areas. For

this reason, we recommend not moving the output areas.

5.3.2 ANOVA Table, Regression Coefficients Table, and Correlation Matrix

Located in Columns “C” through “H” next to the buttons, the user will find the regression

model equation, and the already familiar summary and ANOVA tables for the regression

model (see Chapter 1 for details).

Regression button

This button takes the user to the table of the regression coefficients and significance tests

(see Chapter 1)

R Matrix button

This button allows the user to inspect the R or correlation matrix of the regressors. As

explained in Chapter 3.1.6, this inspection can be useful to find out if regressors are

linearly correlated with each other.

5.3.3 Tabular Output of Observations, Predictions, Residuals, and Outliers

Data button

By pressing this button, the user is taken to an area of the spreadsheet containing a

detailed table of the regression input data, observed and predicted responses, and a

plethora of additional parameters allowing for a thorough analysis of residuals, outliers,

and influential observations. If applicable, the cutoff values for certain parameters are

given above the respective columns. The table contains the following columns:

1. Case, case or observation number in the order of the raw data table
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2. x1….,columns for the k regressor variables including interactions and higher order

terms

3. obs, observed responses

4. Predicted obs, predicted observations

5. Residuals, raw residuals

6. Standardized Residuals

7. Studentized Residuals

8. PRESS Residuals

9. R Student

10. DFFITS

11. Covariance Ratios

12. Std Error Prediction, the Standard Error for the prediction of new observations

13. Std Error Mean, the Standard Error for the prediction of the mean response

14. P% Confid Int Pred, the Confidence Range for the prediction of new observations

at the predefined significance level P%

15. P% Confid Int Mean, the Confidence Range for the prediction of the mean

response at the predefined significance level P%

16. +P % Confid Int Pred, the upper Confidence Limit for the prediction of new

observations at the predefined significance level P%

17. -P % Confid Int Pred, the lower Confidence Limit for the prediction of new

observations at the predefined significance level P%

18. +P % Confid Int Mean, the upper Confidence Limit for the prediction of the mean

response at the predefined significance level P%

19. -P % Confid Int Mean, the lower Confidence Limit for the prediction of the mean

response at the predefined significance level P%

20. Hat Diagonal, the value of the hat matrix diagonal element for this observation

21. Cook's Distance

22. Cumulative Probability of the residual of the given observation

23. Expected Normal Value (Rankits) of the residual of the given observation

24. dfbetas, k columns of dfbeta values for each of the k regressor variables
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A detailed discussion of these parameters and their significance is given in Chapter 3.

Outlier button

Shows a summary table of outliers or influential observations, similar to the Outlier button

on the Main Dialog. If any of the observations exceeds one of the cutoff values for

Standard Residual, Cook’s Distance, and hat matrix diagonal, it is listed here (for an

explanation of these terms, see Chapter 3).
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5.3.4 Printed Output

Print button

The output areas discussed in the previous chapter can be printed after pressing this

button. A dialog window asks the user to specify the

areas to be printed. After pressing “OK”, the Print

Preview window of Excel will be displayed. Here,

the user can make modifications to the page format,

etc. After pressing “Print”, the areas shown in the

preview will be printed. Note that printing is also

possible by selecting an area directly on the output

worksheet and printing using the standard Excel

print functions!

5.3.5 Prediction of New Observations

Predict button

A new observation or the expected mean value for a given observation can be predicted

using this button. A dialog box asks the user to specify the settings for the regressor

variables.

Figure 5-7:Print Selection Dialog
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Figure 5-8: Predict Y Value Dialog

Also, a spinner control is provided to adjust the probability level of the confidence

intervals. The higher the given number, the wider the confidence limits will be (to increase

the probability that the predicted value lies in the confidence range, the wider the range

must be!). The Calc button starts the calculation. The result is shown in the edit box. As

described earlier, the Mean Confidence Interval will always be narrower than the

Prediction Confidence Interval. If the chosen settings for the regressors constitute an

extrapolation, the message at the bottom of the prediction output will say that the

“Factor(s) are outside the regressor variable hull (RVH)”.  The expression hat diag stands

for diagonal value of the hat matrix. If this value, calculated from the given settings of the

regressors, exceeds the maximum value of the original data, hat diag max, the current

prediction extrapolates the data (see Chapter 5.2).

The Exit button closes this dialog.

5.3.6 Finding Input Variables for Given Output (Optimization Problem)

Optimization is here defined as the process of finding  “optimized” settings of the

regressors in the model in order to obtain a predefined output or response value.
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Optimize button

After pressing this button a matrix is displayed showing the input variables (regressors, X-

values), their min and max values, their average values (means) and the current settings of

the regressors. By default, these current values are set equal to the average values. The

corresponding response value is displayed below this matrix as “Y”.

In addition, the Solver Add-In of  Excel is loaded and the Solver Dialog is displayed. If,

after pressing this button, an error message is displayed indicating that “solver.xla” cannot

be found, the Solver Add-in has to be added to the Add-In List in Excel by selecting the

Add-Ins option in the Excel Tools menu!

The Solver Dialog displayed by Essential Regression already contains the appropriate

criteria. (Note: For some unknown reason, in Microsoft Excel 97, this automatic

procedure sometimes will not work , and the user must select the Solver Add-In from the

menu and manually click o.k.!). The user only has to select the appropriate “Equal to:”

option button and, if a specific value for the response, Y, is desired, enter this value. Note

that, by selecting the Max or Min option, Solver will try to find the settings for the

regressors which give the highest or lowest value for Y!
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Figure 5-9: Solver Dialog after selecting the Optimize button

After pressing the Solve button in the Solver Dialog, the Solver will try to find a solution

for the optimization problem. When finished, the current values in the regressor matrix

will be modified accordingly, and the new value for the response, Y, will be displayed.

Another Solver dialog will come up and ask the user to confirm the changes. Only then

will the modifications become permanent.

Note, that there are more options on this dialog to choose from. We cannot delve into the

capabilities of the Solver Add-In in this book, but we recommend reading the Excel help

file or other published information about this Excel Add-In.
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Figure 5-10: Solver Dialog after performing an optimization

The optimize area is on the same worksheet as the other output area. As usual, the Back

button next to the regressor matrix takes the user back to the top left corner of the output

worksheet.

5.3.7 Graphs: Scatter Plots, Confidence Limits, 3D- Plots, and Animations

Essential Regression contains a plethora of graphical output capabilities. Two-dimensional

scatter plots are included to visualize the relationships between the columns of the data

table accessable through the Data button as described further above. For regression

models with two or more variables, spatial surface plots and their two-dimensional

projections, also called contour plots, are available. All these graphs can be selected,

edited, copied, and printed as standard Excel graphs.
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Graph  button

After clicking this button, the cursor jumps to the graph area. This area contains all the

scatter plots which can be generated from the columns of  the data table described in the

section about the Data button.  All the graphs can be viewed in a single embedded Excel

chart. The y and x variables for the desired plot can be selected from the corresponding

drop-down list boxes located above the vertical axis and below the right end of the

horizontal axis. The graph is updated automatically according to the selection. It is

important to remember that the graphs can be extensively formatted with the normal MS

Excel graph editor.  Double clicking on the graph will activate the graph editor.

Figure 5-11: Graph area of output sheet with 2D scatter plot of predicted vs.

observed response Y including trend line and regression equation

The graphs can be manipulated in several ways:

Add Trendline-Remove Trendline toggle button
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Adds or removes linear trendline, R2-value, and regression equation for given selection of

axis variables.

View Graphs-Graph m of n toggle button

Browses through a selection of standard plots to evaluate the regression model. Included

are 8 standard plots similar to the selection we described in Chapter 3.2.4 (Graphs button

on the Main Dialog) which are helpful for model adequacy checking:

1. Predicted Response vs. Observed Response

2. Raw Residuals vs. Predicted Response

3. Standardized Residuals vs. Predicted Response

4. Studentized Residuals vs. Predicted Response

5. Raw Residuals Normal Probability Plot

6. Standardized Residuals Normal Probability Plot

7. Studentized Residuals Normal Probability Plot

8. Raw Residuals vs. Case

In addition, there are plots of the observed response vs. the individual regressor variables.

Confidence button

Pressing this button takes us to a graph area showing all possible scatter plots of the

predicted response vs. the columns of the data table described in the Data button section.

In addition, the confidence ranges for the predefined probability level are shown in the

graphs. A Mean-Prediction toggle button allows the user to switch between the

(narrower) confidence range for the mean response and the (wider) confidence range for

the prediction of new responses. The Add Trendline-Remove Trendline toggle button

works as described in the previous paragraph.

Surfaces button
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This button brings up the surface and contour plot dialog. In a dialog box, the user can

choose two different regressor variables (independent variables) for the x1 and x2 axis of

the plot. The third axis will be used for the response Y(dependent variable). After

selecting the regressors (x1 and x2 variables for the plot), the 3D-graph area of the output

worksheet with a surface plot of the response vs. the two selected regressors is displayed.

In addition, a matrix of all the regressors in the model is displayed similar to the one in the

optimization area described further above.

Figure 5-12: 3D-graph area of output sheet with surface plot for 2-regressor models

It is important to remember that the graphs can be extensively formatted with the normal

MS Excel graph editor.  Double clicking on the graph will activate the graph editor.

There are several possibilities to manipulate the plots:



86

3d-contour toggle button

This button to the right of the Back button allows the user to switch back and forth

between a 3D (surface) and 2D (contour) display.

<,> buttons

With the arrow buttons, the user can rotate the plots to the left (<) or right (>).

+,- buttons

The plus (+) and minus (-) buttons allow the user to increase or decrease the number of

levels (= colors) shown in the plots.

Above the surface/contour plot area, a table is displayed which gives minimum, maximum,

average, and current values for the regressors (terms) of the regression model. By default,

the current value is set to the average value for each regressor.  Note that all the

regressors in the model are given, not only the ones used in the surface/contour plot. This

table offers the following possibilities for further manipulation of the graphs.

By changing the Minimum/Maximum values of the x1 and x2 variable (regressors used in

the graph) in the regressor matrix, the scale of the corresponding axis (x1 and/or x2) can

be adjusted. The graph will be updated immediately after the new values are entered in the

table.

If  more than two regressors are in the model, by default, the regressors which are not

used as x1 or x2 variables in the surface/contour plot are set to their average values. To see

the effects of changes in these additional variables, simply change the corresponding

current values for the respective variable in the regressor matrix. The graph will be

updated immediately after the change. As an additional feature in Essential Regression,

this can be done in the form of an automated animation:
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Figure 5-13: 3D-graph area of output sheet with surface plot for 3-regressor model

Movie button (for >2 regressors in the model)

If your model has more than 2 variables, you will find this button above the graph area.

The “movie” feature allows you to incrementally change the value of one variable while

plotting the response vs. two other variables. If you select to loop through these changes

in the movie dialog window, the effect resembles an animation or movie with the surface

moving up and down according to the value of the changed variable.

Figure 5-14: “Movie” options dialog
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This effect becomes even more dramatic when preventing Excel from autoscaling the

response-axis. The user can do that in the conventional way by selecting the graph editor

in Excel and changing the settings for the scale of the respective axis.

Since the graphs produced by this procedure are standard Excel graphs, they can be

copied to other spreadsheets or Windows applications like MS Powerpoint or Word. So,

surface or contour plots with different settings of a regressor not depicted in the graph can

be arranged on a page to visualize the effects of this regressor. This generates a quasi

four-dimensional graphical representation of the regression model.

5.3.8 Deleting or Duplicating an Output Sheet

Delete button

By pressing this button, the Essential Regression output sheet will be removed from the

current workbook. This will also keep track of the changes in the workbook pertaining to

Essential Regression such as sheet numbering etc. It is recommended to follow this

procedure rather than deleting the sheet by simply choosing Delete Sheet form the Excel

Edit menu.

Duplicate Regression menu option in the Regress menu

Activating this menu option generates copies of the current XLS or output worksheet It

also duplicates the worksheet containing the original data for the regression. The XLS or

output sheet must be the active sheet, otherwise an error message is returned!

5.3.9 Starting A New Regression from Output Sheet

Reregress Button

After examining the output sheet, the user might want to continue the analysis of the data

set using the current model on this output sheet as a starting point. This is made easy by

using the Reregress button. Pressing this button will start up the Essential Regression

Main Dialog with the current model already selected! Obviously, this is a very convenient
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feature compared to starting up Essential Regression from the Regress Menu and going

through the model selection process again!

6. Experimental Design

6.1 Introduction

The whole area of experimental design is a very large field which has enjoyed a renewed

industrial interest in the past two decades.  A reasonably complete treatment of the topic

would encompass an entire book.  We cannot do this.  What we will do is cover

experimental design as it relates directly to regression analysis.  Therefore, we will confine

ourselves to covering some classic experimental designs whose analysis is a multiple

regression.  A prerequisite is that all the design factors are continuous quantitative

variables.  In contrast to qualitative variables, quantitative variables are easily measured

and described by real numbers.  Reactor temperature and reactor pressure are quantitative

variables whereas catalyst type is a qualitative variable.  A good experimental design

methodology allow us to properly distribute our experiments within our factor space so

that we can minimize the number of experiments required to develop a statistically sound

relationship between factors and a response.  The use of qualitative variables in the design

and analysis of experiments is beyond the scope of this book.

In the usual jargon of experimental design, the variables which we are looking to make a

correlation or regression with a measurable output are called factors and the output we

are trying to predict is called the response.  If one is trying to elucidate functional

relationships between quantitative factors and a response, multiple regression is the tool

required to accomplish this.  Therefore, all of the methods and techniques covered up to

this point in the book will be completely applicable to analyzing all of the designs

presented here.  This chapter will concentrate on explaining how one chooses an

appropriate design for the problem he is trying to solve and the consequences and

tradeoffs involved.
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By the end of the chapter we hope to convince the reader that

1)  when one chooses an experimental design he is also choosing a response

regression model

2)  for quantitative factors, multiple regression is a appropriate tool to analyze the

design

3)  smaller, sequential designs consisting of screening designs followed by

response surface modeling design are preferable to single “megadesigns”

We will start by covering designs used for screening.  These designs are used to

determine if a factor is important or not.  They are normally done to gain insight into

which factors are important in a particular process.  This is followed up by response

surface modeling (RSM) where more details regression models are used to determine

response behavior.  In this chapter, as in all the others, the included software, Essential

Experimental Design (EED), will develop all the experimental designs.  Once again,

Essential Regression (ER) will do the analysis.  We would humbly submit that this modest

experimental design and analysis software package can meet the experimental design

needs of many of chemists and engineers.

6.2 Screening Designs

The goal of screening is to narrow the a long list of potentially important factors into

those that are really important with a known amount of statistical confidence.  How one

would intuitively accomplish this is by running a given factor at two levels (a high level

and a low level) and seeing if varying the level of this factor had any effect on the

response.  The simplest design for accomplishing this is the Two level full factorial

design.  In this case, a brute force approach is taken.  Every factor is run with all the other

factors at all their possible settings.
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6.2.1 Two Level Full Factorial Designs

Consider the full factorial experimental design below in Table 6-1 for two factors

generated by the Essential Experimental Design (EED) software.  The low setting for a

factor is given as -1 and the high setting 1.  In this case six total runs are required (four

runs for the main design and two centerpoints).  Centerpoints are experiments added to

the design whose settings are at the midpoint of every factor.  The response regression

model for this design is

Response =b0+b1x +b2x +b3x1x2                                    Eq. 6-1

Table 6-1: Full factorial experimental design for two factors

Run Factor

1

Factor

2

1 -1 -1

2 -1 1

3 1 -1

4 1 1

5 0 0

6 0 0

We can see by doing this design we can estimate the linear effect of each factor (x1, x2)

and an interaction term.  These linear terms or linear effects are often referred to as main

effects.  Similarly, the EED output for a two level full factorial design with three factors is

shown in Table 6-2.
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Table 6-2: Two level full factorial design with three factors

Run Factor

1

Factor

2

Factor

3

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

6 1 -1 1

7 1 1 -1

8 1 1 1

9 0 0 0

10 0 0 0

Response = b0+b1x1+b2x2+b3x3+b4x1x2+b5x2x3+b6x1x3+b7x1x2x3       Eq. 6-2

It is becoming clear that the terms that can be estimated from a Two level full factorial

design are main effects and all the possible interactions from 2 way up to n way where n is

the number of factors.  It is also clear that higher order terms such as x2 can not be

estimated with this design.  This is obvious from the inspecting the main design.  With

only two levels of each factor it is not possible to estimate anything higher than a linear

effect.  However, centerpoints have been added to the basic design.  They do add a third

level of each factor to the design.  A pth order polynomial requires p+1 levels of each

factor.  From earlier discussions we know that repeated points in a multiple regression are

necessary if one is to estimate Pure Error and the Lack-of-Fit (LOF) error.  The LOF test

provides a direct test of order of the regression.  By looking at the significance of the LOF

fit test we can see if curvature or a higher order term of the factors is present or not.  We

will show this directly in an example in the next section.



93

The addition of centerpoints does not effect the estimates of the coefficients except for the

value of the constant.  The number of centerpoints one chooses to do depends greatly on

the preference of the experimenter and the difficulty of doing the experiments.  If

experimentation is relatively easy, we recommend four centerpoints for 2 level factorial

screening designs.  Essential Experimental Design defaults to 2, the minimum required to

estimate LOF, but it allows a user selected number of up to five or as few as zero.  We

highly recommend centerpoints be used in all experimental designs.  If our design

contained any qualitative variables (like type of catalyst), centerpoints would not exist.

This would greatly limit our analysis and interpretation of the experiment.  We will not be

discussing how to deal with these kinds of cases.  In general, we like to use three or four

centerpoints, if it is feasible, for full and fractional factorial screeening designs.

From further inspection of the experimental designs it will be apparent that a computer

program is not required to construct either the response regression model or the design

matrix.  One simply has to run all factors at all levels of all the other factors.  The model is

all possible linear combinations of the factors.  The number of runs required for a 2 level

full factorial design is 2n where n is the number of factors plus the number of centerpoints.

This causes the number of experiments to rise rapidly.  For five factors 32 runs are

required in the main design.  However, we will discuss some more efficient designs which

require fewer experiments to determine the same number of coefficients in the response

regression model, especially as the number of factors to screen becomes larger.

6.2.2 Two Level Fractional Factorial Designs

While full factorial designs are very useful they tend to become very large beyond three

factors.  From our previous discussion it is apparent that much of the additional work with

increasing factors is probably not worth it.  For example, for five factors, 34 runs are

required.  For the vast majority of natural phenomena only 15 terms are of interest in the

full response regression model.  They are the five main effects and ten two way interaction

terms.  (In fact, there are so many terms beyond two way interactions as the number of
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factors increases and they are important in so few cases we have deliberately dropped the

higher order interactions out of the EED response regression model for two level full

factorial designs.  Otherwise, they become a major nuisance.)  This means half the

experiments in the design are used to estimate three, four and five way interactions.

Typically these interactions are not significant and not of interest to the experimenter.

Fortunately for the practicing experimenter, statisticians have solved the problem of how

to properly fractionate a full factorial design to estimate main effects and two way

interactions without having to do all the experiments required to estimate all higher order

interaction terms.

Typically 2 level full factorial designs are fractionated by taking 2k fractions.  That is to

say, one can take a half fraction, quarter fraction, eighth fraction and so on.  Recalling that

a 2 level full factorial has 2n runs our fractional factorial design will have 2n-p runs with the

stipulation that n>p.  The obvious questions that arise are 1) which experiments do we

take? (we know how many to take) and 2) what effect does the fractionation have on our

response regression model?

Consider the main design for a 2 level full factorial experiment for three factors (a,b, and

c) shown below.  We have multiplied out the values of the interaction terms and split the

design into two half fractions based on the value of a*b*c.  One could take a half fraction

of the full factorial design based on the runs that a*b*c = 1 (principle fraction) or a*b*c

= -1 (complimentary fraction).  This two fractions have different shadings in the table.

In the principle fraction c = a*b and in the complimentary fraction c = -a*b.  These

equations are called the generators for the design.  The word abc is called the defining

word for the design.  The defining relation is developed by setting the defining words

equal to plus or minus one depending on the fraction of interest.
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Table 6-3: Main design for a 2 level full factorial experiment for three factors

Run a b c a*b b*c a*c a*b*c

1 -1 -1 1 1 -1 -1 1

2 -1 1 -1 -1 -1 1 1

3 1 -1 -1 -1 1 -1 1

4 1 1 1 1 1 1 1

5 -1 -1 -1 1 1 1 -1

6 -1 1 1 -1 1 -1 -1

7 1 -1 1 -1 -1 1 -1

8 1 1 -1 1 -1 -1 -1

While taking a half fraction of the full factorial design reduces the number of experiments

by one half the effect on the response regression model in not immediately obvious.

Further examination of the design table yields some insight.  The following columns have

the same values in the principle fraction (a and b*c, b and a*c, c and a*b).  Therefore, by

taking the a half fraction of this design it is not possible to discern the difference of

response dependent on a, b*c or a + b*c.  The terms a and b*c are said to be aliased with

each other.  We have paid a penalty for fractionating the design.  We are able to estimate

fewer terms in the response regression model.  Rather than eliminating single terms

completely, terms become aliased together when fractionating.  In this case

Response = b0+b1(a+bc)+b2(b+ac)+b3(c+ab)                   Eq. 6-3

The terms that are aliased together may be easily derived from the "multiplying" the factor

of interest with the defining relation.  In this case, a*1 = a*abc which gives a = a2bc.

Since the factor columns are either plus or minus one, the square of any value is unity.

Therefore, a2 = b2 = c2 = 1 and the final aliases are a = bc, b = ac and c = ab.  Therefore,

the following response regression models would yield the same result as 6-3 (to within a

factor of 2 on the coefficients).
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Response = b0+b1(bc)+b2(ac)+b3(ab)                            Eq. 6-4

Response = b0+b1(a)+b2(b)+b3(c)                                  Eq. 6-5

In short, it is not possible to resolve all the terms in a full factorial regression model with a

fractional factorial experiment.  Two Level Fractional Factorial designs are classified in

terms of their resolution.  A design is of resolution r if no term of f factors is aliased with

another term of less than r-f factors.  The previous half fraction design is a resolution 3

design.  Each main factor (a,b,c where f = 1) is aliased with an interaction term (bc, ac, ab

where r-f = 2).

• Resolution 2 - Main effects are aliased with other main effects.

• Resolution 3 - Main effects are not aliased with each other but with 2 way

interactions.  Two way interaction are aliased with main effects and maybe

other 2 way interactions.

• Resolution 4 - Main effects are not aliased with 2 way interactions.  Two way

interactions are aliased with  other two way interactions.

• Resolution 5 - Main effects are not aliased with either main effects or 2 way

interactions.  Two way interactions are not aliased with each other or main

effects.

These definitions are summarized in the table below.  Understanding resolution is

necessary to choose an appropriate fractionated design.  Resolution forms a basis for

running the EED software.  In the next section we will confirm that the design resolution

is equal to the number of letters in the smallest defining word for the design.  The

resolution one chooses has a direct effect on the response regression model.  By linear, we

mean linear with respect to main effects.
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Table 6-4: Definition of design resolutions

Resolution Aliases of

Main

Effects

Aliases of Two Way

Interactions

Response Regression

Model

2 Main

Effects

3 Two Way Main Effects, Two Way

Interactions

Linear

4 None Two Way Interactions Linear

5 None None Linear + 2 Way

Interactions

The above demonstration makes for a relatively simple case.  As the number of factors

rises, the amount of fractionation we can do and still realize a design of reasonable

resolution rises quickly.  In the next section we will use the EED software to create a

Resolution 3 design for six factors.

With fractionated designs it does not automatically follow that there will be separate

fractions for each resolution.  In other words, for a particular number of factors a

resolution 5 and resolution 3 fraction may only exist (i.e. no resolution 4 fraction exists).

The reader need not worry about this level of detail when using the EED software.  In this

case, a resolution 4 design will not be an available.  Only a resolution 3 and resolution 5

designs could be chosen by the user.
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6.2.3 Using the EED Software for a Two Level Fractional Factorial Design

The Essential Experimental Design (EED) software is launched by opening the EED22.xla

file from within Microsoft Excel Version 5 or 7/95.  After seeing the main startup screen,

experiments are launched by the new DOE menu to the immediate right of the Edit Menu.

Figure 6-1: DOE menu

Selecting Design An Experiment menu item brings up the main design dialog.
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Figure 6-2: EED Main Design Dialog

The Design an Experiment dialog box has several input sections.  Basic input information

common to any experimental design is required in the top Input section.  The number of

factors and responses are specified here.  The number of centerpoints can also be specified

(provided all factors are quantitative).  The user can specify if the experimental runs

should be randomized and if the aliasing structure should be determined.

The design choices are categorized into two main types, screening and response surface

designs.  The screening designs are separated by resolution.  In fact, resolution is the users

guide to selecting a screening design.  One can see as the resolution increases, so does the

number of runs required.  We will begin by doing a resolution 3 screening design on six
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factors.  We can see that 10 total runs are required for this design.  Eight runs for the main

design and two recommended centerpoints.  We can simultaneously see that the full

factorial requires 64 runs while the resolution 3 design requires just 8 runs for the main

design.  This means that the resolution 3 design is an eighth fraction of the full factorial.

Clicking on the Make Experiment button brings up another dialog box for specifying the

factors.

Figure 6-3: Factor Specification Dialog

Here the user needs to further specify the factors in terms of their names, units (if desired),

high and low values.  Clicking OK yields the experimental design in the form of an Excel

workbook.  On the Experiments sheet we see the main design and a brief description of

what the design is and the response regression model.
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Table 6-5: Output of Experiments sheet (I)

Fractional Factorial, Resolution 3

6 Factors

2 Centerpoints

Linear Model with 7 terms

Response = b0 + b1*a + b2*b + b3*c + b4*d + b5*e +

b6*f

Table 6-6: Output of Experiments sheet (II), design table

Exp # a b c d e f Resp_1 Resp_2

1 1 1 1 1 1 1

2 -1 1 1 -1 -1 1

3 1 -1 1 -1 1 -1

4 -1 -1 1 1 -1 -1

5 1 1 -1 1 -1 -1

6 -1 1 -1 -1 1 -1

7 1 -1 -1 -1 -1 1

8 -1 -1 -1 1 1 1

9 0 0 0 0 0 0

10 0 0 0 0 0 0

EED lists generators, defining words, and aliases for fractional factorial designs with less

than 16 factors. On the Aliasing sheet we can see generators and defining words (at the

bottom).
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Table 6-7: Generators from the Aliasing sheet

Generators

d = ab

e = ac

f = bc

Table 6-8: Defining Words from the Aliasing sheet

Defining

Words

abd

ace

bcf

cebd

cfad

bfae

def

We can see that the design was made from three generators.  This makes sense since 23=8

and this is an eighth fraction of a full factorial design.  However, we have 7 defining

words.  Where did they come from?  The first three come directly from the generators as

in our previous example.  The rest come from all possible linear combinations of the first

three defining words.  For example, the fourth defining word comes from multiplying the

first two defining words together and remembering that a squared term is equal to unity.

So abd*ace = a2bdce = bdce or cebd and so on.  Multiplying a given factor times all the

defining words gives the aliases.  For simplicity, the EED software drops four way and

higher terms from the alias report.
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Table 6-9: Alias report output

Factor Aliases

a bd, ce, cdf, bef

b ad, cf, cde, aef

c ae, bf, bde, adf

d ab, ef, bce, acf

e ac, df, bcd, abf

f bc, de, acd, abe

ab d, ef, bce, acf

ac e, df, bcd, abf

ad b, cf, cde, aef

ae c, bf, bde, adf

af cd, be, bdf, cef, abc, ade

bc f, de, acd, abe

bd a, ce, cdf, bef

be cd, af, ade, abc, cef, bdf

bf c, ae, adf, bde

cd be, af, abc, ade, bdf, cef

ce a, bd, bef, cdf

cf b, ad, aef, cde

de f, bc, abe, acd

df e, ac, abf, bcd

ef d, ab, acf, bce

Once again, we can see that the design resolution is equal to the number of letters in the

smallest defining word.  If we select the simulate data option from the DOE menu we can

make some experimental data.  In this first dialog we can choose which variables we want

to be important and the form of the equation whose coefficients we will specify.  In this

case, we have selected a linear model.
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Figure 6-4: Data Simulation Input Dialog

Clicking next brings on the Input Model Coefficients dialog.  Here, we can input

coefficients for the model terms, enter a constant term and a noise standard deviation

value.  The noise standard deviation is the coefficient that random values pulled from a

standard normal distribution (mean of zero and standard deviation of one) are

multiplied by.  In general, the higher the noise coefficient the noisier the simulated data

will be.  Some noise in the data is necessary to realistically model an experiment and to

avoid singularities in the analysis, especially the LOF test.
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Figure 6-5: Input Model Coefficients Dialog

Table 6-10: Simulated Design

Exp # a b c d e f Resp_1 Resp_2

1 1 1 1 1 1 1 14.14 14.14

2 -1 1 1 -1 -1 1 3.45 3.45

3 1 -1 1 -1 1 -1 -3.41 -3.41

4 -1 -1 1 1 -1 -1 -16.49 -16.49

5 1 1 -1 1 -1 -1 15.09 15.09

6 -1 1 -1 -1 1 -1 1.13 1.13

7 1 -1 -1 -1 -1 1 -6.33 -6.33

8 -1 -1 -1 1 1 1 -17.12 -17.12

9 0 0 0 0 0 0 1.17 6.17

10 0 0 0 0 0 0 -1.10 3.90
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For our second response we have copied the first response with one notable exception.

Instead of using just the old centerpoints (Experiments 9 and 10), we have forced some

curvature into the response by adding 5 to the old centerpoints.  We will now illustrate

how one can analyze the design.  By comparing the LOF analysis with these two

responses, one with no significant curvature (Response 1) and one with significant

curvature (Response 2) we will show how curvature can be detected with replicated

centerpoints in this two level fractional factorial design.  We can now analyze the design

by selecting Analyze Design from the DOE menu.  This brings up an alternative startup

procedure for Essential Regression analysis.  The first dialog that will appear is shown

below.

Figure 6-6: Multiple Regression Input Dialog of EED

The user is prompted for the confidence level of the confidence interval calculations, the

response for which the regression will be done, and X or factor transformation to be

specified.  The notable difference between this startup and the usual Essential Regression

startup is that the user can not arbitrarily pick regression model terms (i.e., full quadratic,

cubic, etc.).  The obvious reason for this is the experimental design chosen restricts the

maximum order of the model terms.  In this case we will be restricted to linear model

terms.  This becomes very clear after clicking Next.  This brings up the main regression

dialog.  If one allows the program to AutoFit the data by clicking the Auto button the

dialog box shown below will be the result.
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Figure 6-7: Multiple Regression Main Dialog

There are only linear terms available for inclusion into the regression.  In this case the

AutoFit feature performs well with the default settings.  The coefficients for a and b are

close to their "true" values of 5 and 10.  We know that this particular response has no

curvature since no higher order terms were used to create it.  The LOF test indicates that

LOF significance is high, or that the probability of getting this high a LOF value from

random chance alone is low.  This result may be interpreted that the correct functional

dependence of a and b is linear and not quadratic or higher.  The reader may try to

improve on the model developed using the AutoFit routine by adding or removing terms

from the model.  In this case it is probably not possible to improve on the model.

Consider the output below from doing the identical analysis on Response 2.
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Figure 6-8: Multiple Regression Main Dialog

It is interesting to note that the coefficients of a and b are unchanged even though the

centerpoints were significantly shifted to guarantee curvature in the response.  The

adjusted coefficient of variation is somewhat reduced but still very good.  The LOF test

reveals that there is very significant evidence of missing higher order terms or LOF.  Note

that the LOF test is generally more important to inspect if one feels that the important

factors have been captured in the regression.  That is to say, for good adjusted coefficients

of variation with all the factors of interest.  The LOF test may not indicate any missing

higher order terms but this is not so important if major factors are missing.

At this point the reader is strongly encouraged to run the EED/ER software in simulation

mode.  Setup screening design and simulate data with varying levels of noise which may

be thought of as experimental or measurement error.  We think you will be surprised at

what you find.  The error does not have to get very high in order for unimportant terms to
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appear to be important and other problems to arise.  This is especially true when one

screens higher numbers of factors in fewer and fewer runs (these dasigns are said to

approach saturation, see next section).

6.2.4 Plackett-Burman Designs

In the table below we have determined how many runs are required in the main design for

a Resolution 3 two level fractional factorial design.  The runs shaded in gray are said to be

saturated.  This is because we know from linear algebra it is not possible to determine

n+1 unknowns without n+1 independent equations.  Since we need to determine n

coefficients plus a constant (intercept), n+1 runs are always required at a minimum.  The

cases highlighted in gray are perfectly efficient or saturated.  We are not doing any extra

runs than are absolutely required.  If one looks one row past a saturated row, the

fractionated two level factorial designs are significantly less efficient.  Plackett-Burman

designs help fill the increasing void of inefficiency for 11, 19, 23 and 27 factors (12, 20, 24

and 28 run designs respectively) by providing designs that are saturated.  This can result in

a significant saving of effort.  For example, for 11 factors the Plackett-Burman design is

saturated and requires 12 runs whereas the Resolution 3 two level fractional factorial

design requires 16 runs (33% more).  However, nothing in life is free.  The Plackett-

Burman design has a price to pay.  It has a very complicated alias structure.  Main effects

are not aliased with each other but all main effects are aliased with all two way

interactions.  This can make for a situation which makes the designs difficult to interpret

properly.
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Table 6-11: Main design for a Resolution 3 two level fractional factorial design

Number of Factors

(n)

Number of

Runs

n+1

2 4 3

3 4 4

4 8 5

5 8 6

6 8 7

7 8 8

8 16 9

9 16 10

10 16 11

11 16 12

12 16 13

13 16 14

14 16 15

15 16 16

16 32 17

Consider the experimental design below where we have generated data with the Simulate

Data menu option with the expression Resp_1 = 6 + 1*Noise + 10*a*b.

Table 6-12: Experiments sheet output for design in Table 6-11 (I)

Plackett-Burman Design, Resolution 3

8 Factors

2 Centerpoints

Linear Model with 9 terms

Response = b0 + b1*a + b2*b + b3*c + b4*d + b5*e + b6*f + b7*g + b8*h
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Table 6-13: Experiments sheet output for design in Table 6-11 (II), design table

Exp # a b c d e f g h Resp_1

1 1 -1 1 -1 -1 -1 1 1 -3.9051

2 1 1 -1 1 -1 -1 -1 1 17.491

3 -1 1 1 -1 1 -1 -1 -1 -2.8844

4 1 -1 1 1 -1 1 -1 -1 -4.3799

5 1 1 -1 1 1 -1 1 -1 15.902

6 1 1 1 -1 1 1 -1 1 15.034

7 -1 1 1 1 -1 1 1 -1 -4.5596

8 -1 -1 1 1 1 -1 1 1 16.476

9 -1 -1 -1 1 1 1 -1 1 16.506

10 1 -1 -1 -1 1 1 1 -1 -6.0701

11 -1 1 -1 -1 -1 1 1 1 -3.0353

12 -1 -1 -1 -1 -1 -1 -1 -1 17.719

13 0 0 0 0 0 0 0 0 6.6746

14 0 0 0 0 0 0 0 0 4.96

A preliminary AutoFit with the default settings first yields no significant model terms.

Increasing the forward step significance to 0.2 yields the model below.  However, the

coefficient of variation is poor.  It is clear that the convoluted alias structure is making a

number of linear terms seem important.  This problem of an inability to detect interaction

terms without concomitant linear terms is not unique to Plackett-Burman designs.  It is

common to all screening designs near saturation (the same problem would be encountered

if we used a resolution 3 fractional two level factorial design).  If we used a resolution 4

design, we would not find any model terms to be significant.  The message that should be

received is that if one is concerned that two factors may only be present as an interaction

(e.g. a reaction rate) a higher resolution screening design is in order.  For this particular

case, actually a resolution 5 screening design will catch the a*b interaction term right off

from the start.  However, this requires 64 runs and is not an attractive course of action.
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Normally, nobody wants to run a screening experiment that far from saturation.  At this

point the reader may feel that these experimental design techniques are not so helpful.

Figure 6-9: Multiple Regression Main Dialog

However, something we should point out at this juncture is that often, terms not in the

response regression model for a design can be estimated.  In truth, in a saturated design,

there are enough degrees of freedom to simultaneously evaluate all coefficients in the

response regression model.  When one has trouble finding any significant terms in the

response regression model, we can often investigate higher order and interaction terms not

present in the response regression model.  This benefit is a direct consequence of

following good experimental design form by using replicated centerpoints.  We may run

out of degrees of freedom if we add too many terms but the software will let us know.  In

this case there are 28 two way interaction terms.  Obviously we can not simultaneously
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estimate all 28 as we have only 12 runs in the basic Plackett-Burman design.  However,

we may evaluate them one at a time with a stepwise regression routine.

How can we easily do this?  By using Essential Regression to analyze the design directly.

We can do this by opening ER22.xla.  If the Regress menu is not visible strike Ctrl-m (m is

for menu).  Positioning the cursor at the top of the “a” or first factor column one should

click the Regress Menu and choose Multiple Regression.  In the first dialog, select an

linear + interaction model, factors a-h and Resp_1 as the response.  A single forward

selection step will immediately show the extreme importance of the a*b interaction.

However, the terms g*h, c*h and b*d will also show up as significant via forward

selection.  However, since they improve the overall fit so very marginally we might

correctly assume they are of very minor importance.

If one performs the same screening experiment with a resolution 4 two level fractional

factorial design (this requires 16 runs in the main design vs. 12 for the Plackett-Burman)

no terms are significant.  Since this design has the same response regression model as the

previous Plackett-Burman design and a cleaner alias structure (linear terms are aliased

with three way interactions only) we can be more confident that no linear terms are

important.  Going on and fitting an interactions model we find that the a*b interaction is

very important on the first forward selection step.  This is a bit of a fluke as we can

ascertain from either the alias structure or another forward selection step.  The regression

crashes when evaluating a model with a*b and c*g, or a*b and d*h or a*b and e*h.  This

is because they are aliased together and cause a singularity in the main regression routine.

In fact, if we run the regression four times with only one of these terms we get the same

result.  The clean alias structure gives one no basis for preferring one interaction term over

the other.  In contrast, the Plackett-Burman design clearly shows the a*b interaction to be

more significant if one runs the regression with only one of the potentially important

interaction terms.  In general, estimating terms not in the response model equation is not

desirable since the design is not orthogonal with respect to the new model.  We will

discuss this further in the next section.
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Plackett-Burman designs are good resolution 3 designs.  However, if a main effect shows

up as important it is not possible to know which specific interaction terms it is aliased with

(it is aliased with all of them).  In this case study this was not an issue.  A two level

fractional factorial design does not have this problem.  For this reason we usually

recommend staying away from Plackett-Burman designs unless the cost penalty of

experimentation is very high.

6.3 Orthogonality and Rotatability

Full and two level fractional factorial designs are said to be first order orthogonal

designs.  That means that if one is using these designs to fit a first order model of the

following form

y  = b  + b x  + b x  + + b x  + errorest i i0 1 1 2 2 ...                           Eq. 6-6

for an n run design we have
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                     Eq. 6-7

which can be expressed in matrix form as

y =  Xb +  error                                          Eq. 6-8

For a design to be orthogonal the matrix multiplication (X'X) must yield the identity

matrix.  The advantage using an orthogonal design for determining the coefficients in 6-6

is that the variance of the coefficients is minimized (precision is maximized) over any other

non-orthogonal design.  It turns out that all two level full and fractional factorial designs

with resolution greater than or equal to 3 with standardized factor coding (± 1 factor

levels) are orthogonal for a linear model.  Similarly, resolution 5 or greater two level

fractional factorial designs are orthogonal for an interactions model.  It should now be
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clear to the reader that the EED software always gives the response regression model for

which a chosen screening design is orthogonal.

While orthogonality leads to a minimization of coefficient variance, there is another

variance that is important when considering experimental designs.  It is the variance of the

prediction of the response or prediction variance.  Of course we would like to predict

the response at any point in the factor design space with equal or uniform confidence

intervals but this is not possible.  With some reflection it may be more obvious that we can

predict with more confidence in areas of the factor space where we have measured data in

contrast to regions where we are extrapolating and interpolating.  Since uniform

prediction variance is not possible the next best condition is where the variance of the

prediction is symmetric about the center of the factor space.  This means contours of

constant variance form concentric rings about the center of the factor space.  Designs

which meet this criteria of equal precision of prediction in all directions are called

rotatable.  All two level full and fractional factorial designs with resolution greater than or

equal to three with standardized factor coding (+/- 1 factor levels) are rotatable.

Since all two level full and fractional factorial designs are both orthogonal and rotatable

this makes them very sound designs from a theoretical viewpoint.  Adding centerpoints to

these designs as we recommend does not cause the designs to become non-orthogonal.

Centerpoints do not affect the estimates of any of the coefficients. However, they do

change the estimate of the constant and they do affect the variance of the prediction.

However, these two level full and fractional factorial designs with added centerpoints

remain rotatable.  Clearly, we know the value of the response more precisely if we

measure the centerpoint 10 times (by adding centerpoints to the design) compared to

measuring no centerpoints.  We remain strong advocates of using replicated centerpoints

in all experimental designs.
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6.4 Response Surface Modeling (RSM) Designs

In contrast to screening designs the objective of RSM designs is to identify the detailed

dependence of different factors on a response.  In this case, one is fairly certain that all

factors are important and a full quadratic model is the response regression model.  For

example for two factors the response regression model is

Re sponse = b  + b x  + b x  + b x x  + b x  +b x  + error 0 1 1 2 2 3 1 2 4
2

5 2
2

1
                  Eq. 6-9

In all the RSM designs we will present there is no aliasing between the terms of the full

quadratic response model.  Aliasing with higher order terms may well be present.  In order

for one to properly access a quadratic term, a minimum of three levels of each factor is

required.  At this point the reader may think we are heading in the direction of describing

three level full and fractional factorial designs.  We are not.  All the designs which we will

describe and that are fully implemented in the EED software have the three level factorial

designs solidly beat from a statistical viewpoint.  They are more efficient (require fewer

experiments) and have better predictive properties.  They are rotatable or nearly rotatable

whereas three level factorial designs are not.

The first class of designs we will cover are Central Composite Designs (CCD).  We will

discuss three flavors of this design (inscribed, circumscribed and face-centered).  One

other class of RSM designs we think merits attention is the Box-Behnken designs.  They

will follow the CCD designs.

6.4.1 Inscribed Central Composite Designs

Rather than starting with a long theoretical discussion let us start with using EED to make

an inscribed CCD design for two factors.
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Figure 6-10: EED Main Dialog

Leaving the minimum and maximum levels for each factor at -1 and 1 and naming the first

factor a and the second b gives the following output:

Table 6-14: Output for inscribed CCD design for two factors

Central Composite Design

2 Factors

4 Centerpoints

Quadratic Model with 6 terms

Response = b0 + b1*a + b2*b + b3*a*a + b4*b*b + b5*a*b
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Table 6-15: Inscribed CCD design for two factors with  four centerpoints

Exp # a b Resp_1

1 -1 -1

2 1 -1

3 -1 1

4 1 1

5 -1.414 0

6 1.414 0

7 0 -1.414

8 0 1.414

9 0 0

10 0 0

11 0 0

12 0 0

The aliasing information is "Main effects and two way interactions are not aliased with

each other but may be aliased with three way and higher interactions".

Looking at the response regression model we can see that quadratic terms are present in

contrast to a screening design.  The experiments look somewhat familiar.  The first four

runs are the same as a Two level full factorial design for two factors.  The last four runs

are replicated centerpoints.  The only new feature for this case is the runs 5-8.  They are

called axial or star points and are illustrated in red in Figure 6-11.
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Figure 6-11: Graphical representation of inscribed CCD design for two factors

Let us look at using another inscribed CCD design for three factors:

Table 6-16: inscribed CCD design for three factors

Exp # a b c Resp_

1

1 -1 -1 -1

2 1 -1 -1

3 -1 1 -1

4 1 1 -1

5 -1 -1 1

6 1 -1 1

7 -1 1 1

8 1 1 1

9 -1.682 0 0

10 1.682 0 0

11 0 -1.682 0

12 0 1.682 0

13 0 0 -1.682

14 0 0 1.682

15 0 0 0

16 0 0 0

17 0 0 0

18 0 0 0
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Graphically the axial points may be represented as shown.

Figure 6-12: Graphical representation of inscribed CCD design for three factors

The pattern that emerges is the one which does describe the inscribed CCD design for n

factors.

1. A main Two level full factorial design, or two level fractional factorial design

of resolution 5 or higher.  A total of F runs is required for this factorial portion.

2. Axial or start points along the factor axes beyond the minimum and maximum

values of the main Two level full factorial design

3. Replicated centerpoints.

The reader may be attuned to a practical implication of the first point.  It is often possible

to use most or all of a 2 level screening design in a RSM design.  Suppose we screen on 8

factors and find out three are important.  Often we can use many of the runs from the

fractionated screening 2 level factorial design.  This reusing (or recycling to use a nineties

term) is the ultimate elegance in the practice of sequential designed experiments, resulting

in true reductions in the number of runs required.  Intuitively one might expect savings,

however the magnitude may be surprising.  Suppose we have a process with 11 potentially
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important factors of which four are important.  If we wanted to estimate a full quadratic

model for all eleven factors, we could go straight to an inscribed CCD.  This would

require a staggering 2075 runs (2048 for the full factorial, 22 axial runs and 5

centerpoints).  Another approach would be to screen with a resolution 4 fractional two

level factorial design which would require 35 runs (32 runs for the main design and 3

centerpoints).  This would be followed by an inscribed CCD of 28 runs.  This sequential

experimentation has a maximum of 63 runs.  The exact same information would be

obtained at the end of the two different experiments.  If the experimenter is willing to

reuse centerpoints and other runs from the screening design this number can be reduced

still more.  We heartily endorse the concept of sequential experimentation as both a

practical and theoretically sound approach to experimental design.  It is another reason to

use relatively clean two level fractional factorial screening designs with replicated

centerpoints.

The reader may be wondering how the number of centerpoints are chosen as well as the

placement of the axial points.  It is obvious that the axial points are not a fixed distance

from the origen from the two previous examples.  It is important to remember in response

surface modeling we usually are looking for some optimum or will try to predict values

throughout the factor space.  Since we know beforehand that the factors are important,

the chances of a factor not appearing in the final response regression model is small.  We

will want to make predictions throughout the factor space.  This places a premium on

minimizing the variance of prediction and maximizing its symmetry (rotatability).  The

axial distance a is chosen to assure that the designs are rotatable.  Calculating a from

4 Fa =                                                      Eq. 6-10

assures that the inscribed CCD design is rotatable.  The number of added centerpoints has

no impact on the rotatability of the design or the value of a.  However, for reducing the

prediction variance, especially in the center of the factor space, 3-5 centerpoints are
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recommended.  The EED software defaults to four centerpoints and allows the user to

select a maximum of five or a minimum of three.

6.4.2 Circumscribed Central Composite Designs

However, there are cases when we do not want to have the maximum values we specify in

the minimum and maximum values of the factors multiplied by a to get the axial points.

Instead we wish the minimum and maximum values we specify to be the values of the star

points.  The minimum and maximum values for the factorial part of the design needs to be

scaled to an appropriate level.  Clearly, if we know that we have absolute upper limits on

certain factors we might want to specify them as the axial points.  Table 6-17 below shows

a EED output for a circumscribed central composite design, which does this desired

scaling, for 3 factors.

The circumscribed central composite design, is not really different than the inscribed

central composite design, it just has its factor levels scaled such that the axial points are to

the user specified minimum and maximum level.  Therefore, it has the same number of

total runs, same number of centerpoints and same axial distance value a is used.  In order

to see this one must divide 1/0.595 = 1.682 as it was in the previous inscribed case for

three factors.
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Table 6-17: EED output for a circumscribed central composite design for 3 factors

Exp # a b c Resp_1

1 -0.595 -0.595 -0.595

2 0.595 -0.595 -0.595

3 -0.595 0.595 -0.595

4 0.595 0.595 -0.595

5 -0.595 -0.595 0.595

6 0.595 -0.595 0.595

7 -0.595 0.595 0.595

8 0.595 0.595 0.595

9 -1 0 0

10 1 0 0

11 0 -1 0

12 0 1 0

13 0 0 -1

14 0 0 1

15 0 0 0

16 0 0 0

17 0 0 0

18 0 0 0

One has to remember that if he ultimately thinks he will be performing a CCD, the axial

points might present a problem.  Otherwise, the factorial points from a screening design

may not be reusable in the final CCM.  Planning and forethought yield savings in effort

and experimentation.  If there are no problems going beyond the limits of the screening

factorial experiment, then inscribed central composite designs really lend themselves to

sequential design as described in the previous section.  Otherwise, the circumscribed
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designs described here might be necessary.  Consequently, the screening design upper and

lower limits may have to be narrowed or more experiments performed.

6.4.3 Face Centered Central Composite Designs

This is a very special case of the central composite where the axial distance a is the same

as the minimum and maximum values of the factorial portion of the design.  The axial

distance value a = 1.  For three factors, the axial points are on the centers of a cubic and

hence the name face centered CCD.  In general, this is not a desirable thing to do as we

have emphasized that the value of a determines whether or not the CCD is rotatable.  In

fact, the face centered central composite design is not rotatable.  For three factors the

EED output is shown in Table 6-18.

In this case the number of centerpoints is reduced to 2.  This is all that is required to get a

reasonably even variance of prediction throughout the design space.  When is it

appropriate to apply these designs?  When the factors have clear boundaries that can not

be exceeded.  For instance, percent conversion of a raw material or Shore D hardness

which have intrinsic limits of 0 and 100.  Factors that have measurement scales that

intrinsically have fixed upper and lower limits.  In these cases, rotatability is not a major

concern.
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Table 6-18: EED output for 3-factor-face centered CCD

Exp # a b c Resp_

1

1 -1 -1 -1

2 1 -1 -1

3 -1 1 -1

4 1 1 -1

-1 -1 1

6 1 -1 1

7 -1 1 1

8 1 1 1

9 -1 0 0

10 1 0 0

11 0 -1 0

12 0 1 0

13 0 0 -1

14 0 0 1

15 0 0 0

16 0 0 0

6.4.4 Box-Behnken Designs

These are an unusual class of 3 level designs appropriate for fitting second order response

models.  They are rotatable or nearly rotatable depending on the number of factors.

Below is a Box-Behnken design for 3 factors.



126

Table 6-19: Box-Behnken design for 3 factors

Exp # a b c Resp_

1

1 -1 -1 0

2 1 -1 0

3 -1 1 0

4 1 1 0

5 -1 0 -1

6 1 0 -1

7 -1 0 1

8 1 0 1

9 0 -1 -1

10 0 1 -1

11 0 -1 1

12 0 1 1

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

The design is shown graphically in Figure 6-13.  The features which immediately jump out

when inspecting these designs is that they are "corner free".  No runs are done at the

design corners.  There are no experiments where at least one of the factors is not at its

midpoint.  In contrast, to the inscribed and circumscribed central composite designs, there

are no star or axial points so each factor appears at only three (not five) levels.  At first

glance, these may not seem like potential candidates for sequential experimentation.

However, closer inspection reveals that they are balanced blocks within the design which

does make them candidates for sequential experimentation.  In this case we can see, three
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blocks of 2 factor 2 level factorial designs.  In fact all of the Box-Behnken designs are

balanced block designs.  Since the factors not being studied in a particular block are

always set at there midpoint, corners never appear.  One should especially consider using

these designs when one is not interested in predicting behavior in the corners of the design

space.

Figure 6-13: Graphical representation of Box-Behnken design

6.5 Summary

The EED software has limits on the number of factors for each type of experimental

design.  They are summarized in Table 6-20 below.  Obviously for an arbitrary number of

factors only certain designs are available.  For more than 7 factors only screening designs

are available.  The software handles all of this automatically.  Choices that are not

supported cannot be selected as their option buttons become "grayed out".  Obviously, the

EED software was designed so that an experiment will not exceed 64 runs (without

centerpoints).  This is a hefty and realistic number.

The software will also help the user pick the design with the highest resolution possible for

a given number of experiments.  For example for 3 factors, resolution 4 and resolution 5

two level fractional factorial designs both require 8 runs.  The software automatically

selects the highest possible resolution design and makes the lower resolution unavailable.
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In other words, the user is always guided into obtaining the maximum amount of

information for the number of experiments performed.

Table 6-20: Number of factors and runs for each type of experimental design

Experimental Design Number of

Factors

Number of

Runs

Full 2 Level Factorial 2-6 4-64

Fractional Factorial

(Resolution 5)

2-8 4-64

Fractional Factorial

(Resolution 4)

2-11 4-32

Fractional Factorial

(Resolution 3)

2-31 4-32

Plackett-Burman 2-27 12-28

Central Composite Designs 2-6 8-44

Box-Behnken 3-7 12-56

Table 6-21: Possible and recommended number of centerpoints

Design EED

Allows

Number Recommended

(Minimum/Preferred)

Full Factorial 0-5 2,3

Fractional Factorial (All

Resolutions)

0-5 2,3

Plackett-Burman 0-5 2,3

Central Composite

(Circumscribed and Inscribed)

3-4 4,4

Central Composite Face

Centered

2-5 2,3

Box-Behnken 3-5 4,4
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We would like to re-emphasize and summarize some of the important points made earlier.

The first is that one should always use some repeated points in an experimental design to

estimate lack-of-fit (LOF).  Table 6-21 summarizes the possible and recommended number

of centerpoints for the various designs.

Replicating the centerpoint in two-level fractional factorial designs has advantages because

the LOF test can be interpreted from a curvature point of view.  This was shown directly

in section 6.2.1.  Replicating other points in the design does not afford this judgment of

the presence or absence of curvature in the response regression model.

It is important that the repeated centerpoints represent replicate samples and not merely

repeat measures.  A repeated measure is really just measuring the response of a given

experiment more than once rather than completely starting over.  Consider an experiment

where a spectrometer is measuring some absorbance of a painted panel.  Repeated

measures would correspond to multiple measurements made on a single sprayed panel.  A

true replicate would start from a separate batch of raw materials, a separate substrate and

another spraying of the substrate.  This truly captures the variation in the entire coating

process.  Repeated measures in this case could be used to determine the variability in the

spectrometer.

Another issue when doing an experiment is the possibility that there is some other bias

floating around that could disturb the analysis of the design.  Consider an experiment that

is performed outside.  If all the experiments that performs have a high level of factor A are

done in the morning when the ambient temperature is cooler, we can not separate the

effect of ambient temperature and factor A.  These two factors are said to be confounded.

If we feel a variable like ambient temperature is important it should be included as a design

factor.  But if we do not, we should try to minimize its potential effect on the analysis

through randomization of the design.  The main dialog in EED does have a randomize

checkbox for this very reason.  This allows there to be a completely random way of

running the experiments.  Therefore, it is unlikely that factor A will be confounded with
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ambient temperature.  Furthermore, even if ambient temperature were slightly significant,

it would not interfere with the analysis of the experiment since its effect would be

distributed across the design.  It would contribute to the lack of fit error.

In closing we would want to point out some of the dangers of using an experimental

design and blindly running an automatic fitting of the response.  This often will lead to

terms in the response which may not be important.  We recommend that the user manually

use sequential forward selection and backward elimination steps keeping an eye on the

adjusted R2 value.  If for a given forward selection the adjusted R2 goes up only very

slightly and the term does not seem to be physically feasible we would tend to go without

that term.  One has to remember that, in general, one does not have a great excess of data

in analyzing an experimental design so it is relatively easy for a term to seem important by

chance alone.  If one had a large amount of data (>50 points) then this precaution need

not be made.  Running the EED/ER package in simulation will demonstrate our point very

strongly.

7. Quick Guide and Tutorial

7.1 Important Reminder

Essential Regression and Essential Experimental Design are compiled Microsoft Excel

Macros (Add-ins). In other words, Microsoft Excel is needed to run them. They were

developed for Microsoft Excel Versions 5.0c and later. We recommend using Microsoft

Excel 7.0 for Windows 95 or Excel 97 (Version 8.0).  It has not been tested for versions

of Excel beyond 97. We cannot guarantee it will work on newer versions. We will try and

upgrade the software if necessary when later versions of Excel arrive.
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7.2 Installation

Essential Experimental Design and Essential Regression come on a 3.5” disk.  To install

the software, run setup.exe on the disk.

Insert the disk in your diskette drive. In Windows 3.x, if the disk drive is named drive A,

start the File Manager and activate the file list for drive A. You can either double-click

the setup.exe file in the file list (Windows 3.x) or select File, Run, and then type

“setup.exe”. In Windows 95, you can either double-click  the “My computer” icon, then

do the same with the “3 ½ Floppy [A:]” icon and then double-click the “setup.exe” file,

or you click on the Start button, select Run and type “a:\setup.exe”.

By default, setup.exe will install the program files to “C:\eregress”. You can choose a

different destination if you prefer. Setup will also install a program group “Essential

Regression” in the start menu (Windows 95) or the Program Manager (Windows 3.x).

Note: Setup.exe will not install the data file er_test.xls which is also on the program

diskette. Please copy this file manually from the diskette to the directory in which you

installed Essential Regression (C:\eregress by default).

7.3 Loading Essential Regression into MS Excel

From within MS Excel

In Excel, with at least one empty workbook open, select the File,Open menu. Locate

ER22.xla in c:\eregress (or the directory you installed the program into) and open it. This

will start the Add-In and, after an introductory screen, add a new Regress menu to the

Excel main menu bar between the File and View menus.

From outside MS Excel

In Windows 95, select Start àà Programs àà Essential Regression àà Essential

Regression. In Windows 3.x, double-click the Essential Regression Icon in the Essential

Regression Program Group.
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Like any other Excel file, Essential Regression (ER22.xla) can also be opened directly in

the File Manager (Windows 3.x) or Explorer (Windows 95) .

MS Excel will start up (or simply become the active application if it was started up

before), and, after the introductory screens, a new Regress menu will be added to the

Excel main menu bar between the File and View menus.

7.4 Performing a Regression Analysis using the ER_Test Data

Note: Paragraphs in italics are meant only to point to additional features of Essential

Regression. You are not supposed to execute them. However, if you do so, your screen

could look different from what is given in the text and you should go back to the point

before you “took the detour”.

Open the Excel workbook “er_test.xls” which you should find in the Essential Regression

program directory (provided you copied it from the program diskette, see chapter

“Installation”). On the “data” worksheet, this workbook contains a small data set. The

regressor variables X1 and X2 and the response, Y, are arranged in columns, the

observations are arranged in rows. Any data table to be analyzed with Essential

Regression should be arranged like this. The “A” column contains the index number of

each observation. In columns “B” and “C”, you’ll find the effects or x variables. Column

“D” contains the response or Y variable.

Cell “B1” is highlighted in red. It is the leftmost cell in the header row of the range with

useful data (not counting the index column). We call it the “pivot cell” of the data table.

Please select this cell.

Note: It is important to select the pivot cell in a data table before launching

Essential Regression!
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In the Regress menu, select Multiple Regression. This will activate the Multiple

Regression Input Dialog.

To select the response variable, click the “down arrow” in the Response (Y) drop-down

list box. The list box should show the variables.  Select the “Y” variable as the response.

Now focus on the two “Select Factors”  windows in the dialog box. To select factors or

input variables, add “X1” and “X2” from the list in the left window to the right window by

using the “>” button between the windows. Do not add the response or y variable to the

right window.   If this happens, you can remove it using the “<” button.

Go to the “Type of Regression” drop-down box and select “Full Quadratic” from the list.

Do not change the remaining options. The dialog box should now look like this:

Click “ >>Next>>”. This opens the “Multiple Regression” Main Dialog.

In the upper left quadrant of the “Multiple Regression” Main Dialog you’ll find the “Select

Term” window with a list of all possible terms in the model based on the “Full quadratic”

model selected in the previous dialog: linear, squared, and interaction terms. Note that
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Essential Regression creates this list for you automatically. Using the arrow buttons,

model terms can be added or deleted from the model after selecting them in the

corresponding window. The terms currently in the model are listed in the “Current Model”

Window. Note that any subset of the regression model selected in the previous dialog

under “Type of Regression” can be created.

Select  “X1” in the “Select Term” window and click the “>” button. Repeat this with

“X2”. This creates a linear model with these two terms. To perform the regression, click

the “Regress” button  to the right of the “Current  Model” window. This executes the

regression analysis and the dialog should now look like this:

The “Multiple Regression” Main Dialog displays most of the results needed to evaluate a

regression model instantly. In the “Output” area, the “Summary”, “ANOVA”, and

regression coefficients or “Term” window show the parameters needed to assess the
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quality of the selected model. For example, you can see that the coefficient of

determination  R2 for the linear model is .984, the adjusted R2 is .984, and the so-called R2

for prediction, estimating the prediction accuracy of the model, is .982. In the ANOVA

table, the F-value is high (1432), and the F-significance is very low (3.75e-42), indicating a

highly significant regression model.

What if you want to evaluate other models based on the selected variables “X1” and

“X2”? How does the full quadratic model compare to the linear model ?

Select the first term in the “Select term” window and click the “>” button repeatedly until

all the 5 possible terms are in the model. Note that the “Output” area is cleared when

doing that. Now click on “Regress” again. The dialog should look like this:

These are the results for the full quadratic model. You can see that all three R2 parameters

have improved. This can be checked easily by clicking the “Previous” button. The

“Previous model summary” is displayed:
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However, a look at the “ANOVA” and coefficients window shows that the F-value has

decreased (from 1432 to 754), and, more obviously, some of the model terms have a low

significance, i.e., the probability output for the t-statistic in the coefficients window shows

numbers >0.1 (remember: the smaller the significance number  in the table, the more

significant the term).

Apparently, our model contains “unnecessary” terms. How can we find out fast what is the

“best” model among the possible combinations of linear, quadratic, and interaction terms?

In Essential Regression, we have the possibility to perform forward and backward

stepwise regression based on a threshold significance which can be adjusted by the user.

You’ll find buttons for forward selection or backward elimination of model terms in the

“AutoRegress” area in the upper right corner of the dialog. For example, using the full

quadratic model with 5 terms, we could use the “<<Back Elim<<” button now to

remove insignificant terms from the model in a stepwise fashion.

Another possibility is the use of the “Fit All” Button (can be used with no model terms

selected in the Main Dialog) to get a list of all possible models (31) sorted by decreasing

R2 and R2 adjusted. If you do that, you’ll get another worksheet with a list of all possible

subsets of our 5 term quadratic model.
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However, one of the exceptional features of Essential Regression is the “AutoFit”, i.e., the

automatic selection of the “best” model using repeated forward and backward stepwise

regression until no further improvement can be detected.

Using the dialog as shown above as a starting point, press the “AutoFit” button in the

“AutoRegress” area (upper left corner). Note that the progress is indicated in the Excel

status bar at the bottom of the screen. After a few seconds, you should get the following

message:

Click “OK”, and the dialog should look like this:
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The selected model contains the terms “X1”, “X2”, “X1*X1”, and the constant term or

intercept. Note that this model does not generally have higher R2 terms than the full

quadratic model (the R2 for prediction is only slightly higher), but the F-value is higher

(1284) (or, meaning the same, the “F-Significance” value is lower), indicating a more

significant model. All the model terms are highly significant, indicated by the very low

“Significance” values in the coefficients window.

If you execute the “Fit All” option described further above, you’ll see that the model the

“AutoFit” came up with is actually not the best model available in terms of the R2-

values. However, the 3 “better” models all have insignificant, i.e., redundant terms!

The “Multiple Regression” dialog allows to perform model adequacy checking. The

“outlier” button produces a list showing outliers , leverage, and influential cases in our
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database. The “Graph” button opens another dialog which shows a variety of scatter plots

useful for residual analysis.

For example, click the “Graph”  button and then “Add Trendline” in the graph dialog. It

should look like this:

This graph shows a plot of  the y-values predicted by the model (“Y predicted”) vs. the

observed “Y” values and the corresponding linear trend line. As you can see, a variety of

plots is available which can be selected with the arrow buttons.

So far we only could see the results of the regression analysis in dialog boxes. Now, we

will create a permanent Excel output worksheet. Exit the graph dialog shown above and

press the “Make XLS” button in the main dialog. After a few seconds, the following

message should appear. Click “OK” and then “Exit” in the main dialog.
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After exiting the main dialog, the output sheet (“data_1”) should be the active window.

Note the buttons on the left hand side in the first column. By pressing these buttons, you

can perform a series of useful actions:

-Reregress the model (goes back to the Main Dialog),

-Delete the output sheet if needed,

-Predict new responses based on new data points,

-see scatter plots similar to the ones described above for residual analysis

(“Graph”),

-evaluate a data table including residual analysis for each data point,

-go to a regression coefficients table like the one in the main dialog,

-“optimize”, i.e., find a set of inputs which gives a specific output,

-check the confidence ranges for the regression in a scatter plot,

-view the outlier table,

-print selected output ranges from the sheet,

-look at the correlation matrix (R matrix).

Finally, the “surface” button allows you to see a 3D surface of you regression model

equation, provided there is more than one variable in your model.

In our example, the equation we arrived at after using “AutoFit” contained “X1” and “X2”

(as the squared term). On the output Excel sheet you just created, press the “Surfaces”

button. In the next message box, click “OK”:
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The next dialog shows a list of the available variables to plot. In our case, there is only one

3D plot possible: the reponse (“Y”) vs. “X1” and “X2”.

Select “X1” and click the “Pick” button. In the next message box, click “OK”.

Select “X2”, and click the “Pick” button again. Essential Regression creates the surface

plot, and you should see the following graph on your worksheet:
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If you click the “Contour” button above the graph, you get the 2D representation of the

surface, a contour plot. The “Contour” button changes to a “3d” button. Pressing it brings

back a surface plot.

You can rotate the graphs by using the “<” and “>” keys. Also, you can increase or

decrease the number of levels by clicking “+” or “-“, respectively. In our example, we have

used the “+” key a few times to bring out more colors.

If your model has more than 2 variables, you will find another button above the graph

area with the caption “movie”.  The “movie” feature allows you to incrementally change

the value of one variable while plotting the response vs. two other variables. If you loop
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through these changes, the effect resembles an animation or movie with the surface

changing according to the value of the changed variable.

Pressing the “Back” button at any time takes you back to the starting point, i.e., the upper

left corner of the worksheet.

Make sure that you save the Excel worksheet before closing Excel if you wish to keep the

output. Basically, this sheet generated by Essential Regression (ER) is a standard Excel

worksheet linked to ER through the added buttons.

This tutorial is intended to lead you through a relatively simple regression analysis

while emphasizing the features of Essential Regression which allow for a quick

assessment of the model. There are many more features explained in detail in the

previous chapters.

7.5 Unloading Essential Regression

In Excel simply select the Regress, Unload menu option this will close Essential

Regression and remove the Regress menu from Excel.
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7.6 Loading Essential Experimental Design into MS Excel

From within MS Excel

In Excel, with at least one empty workbook open,  select the File, Open menu. Locate

EED22.xla in c:\eregress (or the directory you installed the program into) and open it.

This will start the Add-in and, after an introductory screen, add a new DOE menu to the

Excel main menu  bar between the File and View menus.

From outside MS Excel

In Windows 95, select Start, ProgramsàEssential Regression àEssential

Experimental Design. In Windows 3.x, double-click the Essential Experimental Design

Icon in the Essential Regression Program Group.

Like any other Excel file, Essential Experimental Design (EED22.xla) can also be opened

directly in the File Manager (Windows 3.x) or Explorer (Windows 95) .

MS Excel will start up (or simply become the active application if it was started up

before), and, after the introductory screens,  a new DOE menu will be added to the Excel

main menu bar between the File and View menus.

7.7 Creating a simple experimental design and analyzing it with

Essential Experimental Design (EED)

We assume EED is loaded and the DOE menu is visible. First, select the Design An

Experiment option in the DOE menu. This brings up the Design an Experiment Dialog.

We are going to create a circumscribed central composite design (CCD) with 3 factors

and 4 center points to assess curvature and experimental error. Please make the

appropriate selections. The dialog should look like this before you continue:
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In the colored section at the bottom, the dialog shows that our design has 18 runs or

experiments (including the center points), and that the underlying model has quadratic

terms.

Press the “Make DOE” button. EED creates the “Aliasing” worksheets giving information

how certain effects are aliased with others, and the Factor Definition Dialog will be

displayed:
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Here, you can set the lows and highs for the design factors. For our purposes, simply

accept -1 and 1 as low and high settings for the design and continue with “OK”. EED will

create the “Experiments” worksheet and the following confirmation message will appear.

Simply press “OK” to continue:

In the “Experiments” worksheet, you’ll find information about your design and the

underlying model. Let us pretend we would conduct the 18 experiments necessary to

analyze the model. In EED, we can simulate this process. In the DOE menu, select

Simulate Data.  This will bring up the Data Simulation Input Dialog. Accept “Resp_1” as

the response name and select the Factors F1, F2, and F3 as the model factors. Further,

let’s assume we have a linear model (you can change the model type in the “Type of

Model” list box at the bottom of the dialog). The dialog should now look like this:
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Press the “>>Next>>” button.  This will bring up the Input Model Coefficients Dialog.

Select “F1” (factor 1) in the window listing the “Possible Model Terms”. Then type the

value for the coefficient for  factor 1  into the edit box shown below the “Initial

Coefficients” window. The cursor should be activated in this edit box by default so that,

after selecting “F1”, you should be able to type directly. Enter “5” as the value for the

coefficient.

Repeat these steps for the factors F2 and F3 using “10” and “-15” as coefficients.  After

that, enter  “10” as a value for the constant term in the model and leave the noise standard

deviation at 1. The dialog should then look like this:



148

This concludes the model definition. What we have done is to simulate a linear regression

model as the basis for our experimental design.  Press the “Make Data” button, and EED

will calculate “responses” for each experiment on the “Experiments” worksheet. Note that

the data table now contains data in the response column.

Let’s  pretend we do not know the exact model equation which we just have used to

calculate our data. The next step will be a multiple regression to come up with a model

which describes our data best.

To perform this task, select Analyze Design in the DOE menu (the “Experiments”

worksheet should be the active sheet when doing this). This will launch Essential

Regression in “EED mode”, and a Multiple Regression Input Dialog different from the

one shown in Chapter 7.4 will come up:
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By default, this dialog selects “Resp_1” as the column of the data table containing the

response. Accept the defaults and click “>>Next>>”. This will bring up the Multiple

Regression Main Dialog (see Chapter 7.4). At this point, simply click the “AutoFit” button

and have Essential Regression find the best model. The outcome depends on the data you

simulated as described previously. The random error or noise term we introduced can lead

to different results as far as the optimized model is concerned. However, the model you

end up with should contain F1, F2, and F3 as highly significant factors and possibly

another, higher order term with less significance.

You could click the “Fit all” button in the Multiple Regression Main Dialog and find out

which model is the “best”, based on R2 and R2 adjusted. If you limit the number of

factors to 4, this should not take unreasonably long.

Also, note that you are now in Essential Regression (ER). You can use all the features of

ER including 3D- graphing. Since you have 3 variables, you can use the “movie” feature

in the surface plot area of the output sheet (described in chapter 7.4).

7.8 Unloading Essential Experimental Design

In Excel simply select the DOE, Unload menu option this will close Essential

Experimental Design and remove the DOE menu from Excel.
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8. Literature

This book was meant as a supplement to the Essential Regression and Essential

Experimental Design Add-Ins. We put in as much information about Linear Regression

and DOE as we thought was reasonable to enable any user of this software to perform a

meaningful analysis. We are aware that,by doing so, we had to cut corners here and there

and sometimes even leave out topics which, in the eyes of a really serious reader (or a

statistician), should have been discussed.

For people interested in the fundamentals and the mathematical details, we recommend

studying some of the following publications. We, not being statisticians by trade,

necessarily had to distill much of the information presented in these literature references

into this book and, hopefully did not make too many mistakes in doing so. We think

everybody applying statistics on a regular basis should peruse some of the books listed

below:

Douglas C. Montgomery and Elizabeth A. Peck, “Introduction to Linear Regression

Analysis”, 2nd Ed. 1992, John Wiley & Sons, Inc., New York, NY (ISBN 0-471-53387-4).

Raymond H. Myers, Douglas C. Montgomery, “Response Surface Methodology, 1995,

John Wiley & Sons, Inc., New York, NY (ISBN 0-471-58100-3).

Douglas C. Montgomery, “Design and Analysis of Experiments”, 3rd Ed., 1991, John

Wiley & Sons, ew York, NY (ISBN 0-471-52000-4).

Lyman Ott, “An Introduction to Statistical Methods and Data Analysis”, 3rd Ed. 1988,

PWS-Kent Publishing Co. Boston, MA (ISBN 0-534-91926-X).

Jay L. Devore, “Probability and Statistics for Engineers and the Sciences”, 3rd Ed. 1991,

Brooks/Cole Publishing Co., Pacific Grove, CA (ISBN 0-534-14352-0)
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For readers interested in the details of nonlinear regression analysis:

Douglas M. Bates, Donald G. Watts, Nonlinear Regression Analysis ad its Applications,

John Wiley & Sons, Inc., New York, NY (ISBN 0-471-81643-4).
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9. Index

A

adjusted R2, 52, 61, 62, 63, 66, 130, 135

alias, 102, 109, 111, 113

Analysis of Variance, 44

ANOVA table, 38, 44, 57, 68, 75, 135

Autocorrelation, 55

C

centering, 14, 26, 33

centerpoints, 91, 92, 93, 99, 100, 106, 108, 112,

115, 118, 120, 121, 122, 124, 127, 128, 129

central composite design (CCD), 144

Coefficient of Multiple Determination, 62

confounded, 129

Cook’s distance, 59

correlation, 45, 46, 54, 55, 63, 75, 89, 140

COVRATIO, 52

curvature, 41, 92, 106, 107, 108, 129, 144

D

defining relation, 94, 95

defining word, 94, 96, 101, 102, 103

dependent variable, 17, 20, 25, 26, 27, 31, 85

DFBETAS, 51

DFFITS, 51, 76

E

EED, 28, 90, 91, 94, 96, 97, 98, 101, 102, 108, 115,

116, 122, 123, 124, 125, 127, 128, 129, 130, 144,

145, 146, 148

ER, 25, 26, 27, 28, 30, 31, 33, 41, 48, 53, 54, 60, 69,

90, 108, 130, 143, 149

Error Sum of Squares, 35, 36, 37, 40, 41, 45, 52, 53

Essential Experimental Design, 28, 90, 91, 93, 98,

130, 131, 144, 149, 150

F

face centered CCD, 124, 125

factors, 17, 26, 30, 44, 54, 61, 89, 90, 91, 92, 93, 94,

95, 96, 97, 99, 100, 101, 108, 109, 111, 113, 116,

117, 118, 119, 120, 121, 122, 123, 124, 125, 126,

127, 128, 129, 133, 144, 146, 147, 149

fitted value, 51

Forward Selection, 39, 63, 64, 65, 66, 67

fractionate, 94

H

hat matrix, 22, 49, 50, 59, 73, 76, 77, 79

hypothesis testing, 55

I

independent variable, 13, 14, 15, 17, 18, 19, 20, 21,

25, 26, 27, 30, 31, 33, 34, 35, 36, 40, 43, 53, 85

influential observation, 59, 75, 77
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