11 Esercitazione 11: / /

© I diritti d'autore sono riservati. Ogni sfruttamento commerciale del presente materiale sarà perseguito a norma di legge.

11.1 Vettori aleatori gaussiani

Esercizio 1 Siano Z_1 , Z_2 e Z_3 variabili aleatorie gaussiane standard indipendenti, e siano

$$X_1 = Z_1 - Z_2 + Z_3 + 1$$

 $X_2 = -Z_2 - Z_3 - 1$
 $X_3 = Z_3 + 2$

- 1. Calcolare la matrice di covarianza ed il vettore delle medie di (X_1, X_2, X_3) .
- 2. Come si distribuisce (X_1, X_2, X_3) ?
- 3. X_1 e X_2 sono indipendenti? X_1 e X_3 sono indipendenti? X_2 e X_3 sono indipendenti? X_1 , X_2 e X_3 sono indipendenti?

Esercizio 2 Siano X, Y due v.a. indipendenti $\mathbf{N}(0,1)$.

- 1. Calcolare la legge di X Y.
- 2. Calcolare la densità congiunte di $\begin{pmatrix} X \\ \sqrt{2}Y \end{pmatrix}$ e di $\begin{pmatrix} X \\ X-Y \end{pmatrix}$ e le rispettive marginali.
- 3. Mostrare che X + Y ed X Y sono indipendenti.

Esercizio 3 $Sia~X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ un vettore aleatorio con legge normale N(m,C),

dove

$$m = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}, \qquad C = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 5 & 1 \\ 2 & 1 & 2 \end{pmatrix}.$$

- 1. Scrivere la densità del vettore $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$.
- 2. Scrivere le funzioni generatrici dei momenti di $\left(\begin{array}{c} X_1 \\ X_2 \end{array} \right)$ e di X_1-2X_3 .

Esercizio 4 Siano X_1, X_2, X_3 i.i.d $\sim \mathcal{N}(0,1)$. Consideriamo le variabili aleatorie Y_1, Y_2 ottenute mediante le seguenti trasformazioni lineari:

$$Y_1 = X_1 + 2X_2 + 3X_3$$
$$Y_2 = 2X_1 + 3X_2 + X_3$$

- 1. Calcolate le medie di Y_1, Y_2 .
- 2. Calcolate la matrice di covarianza del vettore $(Y_1, Y_2)^T$.
- 3. Qual è la densità del vettore $(Y_1, Y_2)^T$?
- 4. Qual è la densità di $Y_1 + Y_2$?

Esercizio 5 Siano U e V variabili aleatorie indipendenti, gaussiane standard. Sia $W = \rho U + \sqrt{1 - \rho^2} V$ con $\rho \in (-1, 1)$.

- 1. Determinare la legge di W al variare di $\rho \in (-1, 1)$.
- 2. Determinare la legge di (U, W).
- 3. Per quali valori di $\rho \in (-1,1)$ U e W sono indipendenti?

11.2 La funzione quantile

Esercizio 6 Per ogni funzione di ripartizione F, cioè per ogni funzione reale non decrescente, continua da destra e tale che $\lim_{x\to+\infty} F(X) = 1$ e $\lim_{x\to-\infty} F(X) = 0$, si chiama funzione quantile Q_F o pseudoinversa di F la funzione così definita

$$Q_F(x) := \inf\{t : F(t) \ge x\}, \qquad x \in (0,1).$$

Mostrare che che

1.

$$F \circ Q_F(x) \ge x, \quad \forall x \in (0,1)$$

in particolare il segno di uguaglianza vale se e solo se $x \in Rg(F)$.

2.

$$Q_F \circ F(t) \le t, \quad \forall t \in \mathbb{R}$$

in particolare il segno di uguaglianza vale se e solo se $\forall t \in \mathbb{R}$ si ha $\operatorname{card}(F^{-1} \circ F(t)) = 1$.

Esercizio 7 Mostrare che $Q_F:(0,1)\to\mathbb{R}$ è una variabile aleatoria su $((0,1),\mathcal{B}_{(0,1)},m)$ con funzione di ripartizione F.

Definita

$$Q_F^+(x) := \inf\{t : F(t) > x\}$$

mostrare che anche Q_F^+ è una variabile aleatoria sullo stesso spazio, con funzione di ripartizione F. Mostrare altresì che $m(Q_F^+ = Q_F) = 1$.

Esercizio 8 Mostrare che se X è una variabile assolutamente continua (i.e. la sua funzione di ripartizione F_X è continua) allora $F \circ X \sim \text{Unif}((0,1))$. Mostrare che se X non è assolutamente continua allora $F \circ X$ non ha distribuzione uniforme.

Esercizio 9 Mostrare con un esempio che

- 1. X,Y gaussiane scorrelate non implica che X,Y siano indipendenti;
- 2. X, Y gaussiane scorrelate non implica che (X, Y) sia un vettore gaussiano;
- 3. X, Y gaussiane scorrelate non implica che aX + bY sia gaussiano per ogni $a, b \in \mathbb{R}$.

11.3 Riepilogo

Esercizio 10 $Su(\Omega, \mathcal{F}, \mathbb{P})$ sia assegnata una successione N, X_1, X_2, \ldots di variabili aleatorie indipendenti, tale che N abbia legge di Poisson di parametro λ , e ciascuna delle X_i abbia legge di Bernoulli di parametro p. Si ponga $S_n = X_1 + \cdots + X_n$ ($S_0 = 0$) e si denoti con S_N la variabile aleatoria che, per ciascun intero $n \geq 0$, coincide con S_n sull'insieme $\{N = n\}$.

- 1. Qual è la legge di S_N ?
- 2. Qual è la legge di $N S_N$?
- 3. Si può affermare che S_N sia indipendente da $N-S_N$?

SOLUZIONI

Soluzione esercizio 1.

1. Si ha:

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = A \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \end{pmatrix} + b = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

La matrice di covarianza e il vettore delle medie sono i seguenti:

$$C = AA^T = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} \qquad \mu = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

- 2. Dal momento che $\det(A) \neq 0$, il vettore $(X_1, X_2, X_3)^T$ è gaussiano, precisamente, $(X_1, X_2, X_3)^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{C})$.
- 3. Si, no, no, no : è sufficiente leggere le entrate delle matrice di covarianza ${\cal C}.$

Si ricordi che per un vettore Gaussiano (X_1,\ldots,X_n) con matrice delle covarianze $C=(c_{i,j})_{i,j=1,\ldots,n}$ l' indipendenza delle variabili X_{i_1},\ldots,X_{i_k} è equivalente al fatto che la sottomatrice $\overline{C}:=(C_{i_r,i_l})_{r,l=1,\ldots,k}$ sia diagonale

Soluzione esercizio 2.

Ricordiamo che X è un vettore gaussiano se e solo se per ogni a si ha $\langle a, x \rangle$ è una variabile gaussiana. Inoltre dato un vettore gaussiano X ed una matrice deterministica A $m \times n$ di rango $m \leq n$, si ha che $A \cdot X$ è un vettore gaussiano. L'ipotesi sul rango e sulla dimensione $n \geq m$ è solo per garantire l'esistenza della densità; nel caso generale tutte le trasformazioni lineari prendono il nome di vettore Gaussiano generalizzato (la definizione di quest' ultimo viene data utilizzando la sua funzione caratteristica).

- 1. Il vettore $\binom{X}{Y}$ è chiaramente congiuntamente gaussiano, quindi X-Y è una variabile aleatoria gaussiana, essendo una combinazione lineare delle sue componenti. Si tratta di individuare la media e la varianza: $\mathbb{E}(X-Y) = \mathbb{E}(X) \mathbb{E}(Y) = 0 0 = 0$ e var(X-Y) = var(X) + var(-Y) = 1 + 1 = 2. Quindi $X-Y \sim \mathbf{N}(0,2)$.
- 2. $(X, \sqrt{2}Y)$) è un vettore gaussiano, infatti è della forma:

$$\begin{pmatrix} X \\ \sqrt{2}Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

dove $A = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{2} \end{pmatrix}$ è invertibile (il che equivale ad avere rango massimo

per una matrice quadrata), quindi ha legge $\mathbf{N}(\mu, C)$, dove $\mu = A \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} e C = AA^T = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Dalla forma della covarianza deduciamo che X e $\sqrt{2}Y$ sono indipendenti, quindi la densità congiunta è il prodotto delle marginali ed è la funzione $f_{(X,\sqrt{2}Y)}$ (delle due variabili reali (x,y)):

$$f_{(X,\sqrt{2}Y)}(x,y) = \frac{1}{2\sqrt{2}\pi} \exp\{-\frac{x^2}{2} - \frac{y^2}{4}\}$$

Inoltre $X \sim \mathcal{N}(0,1)$ e $\sqrt{2}Y \sim \mathcal{N}(0,2)$. Analogamente (X,X-Y)) è un vettore gaussiano, infatti è della forma:

$$\begin{pmatrix} X \\ X - Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

dove $A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$ è invertibile, quindi ha legge $\mathbf{N}(\mu_1, D)$, dove $\mu_1 = A \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ e $D = AA^T = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

La sua densità è la funzione $f_{(X,X-Y)}$ (delle due variabili reali (x,y)):

$$f_{(X,X-Y)}(x,y) = \frac{1}{2\pi} \exp\{-x^2 + xy - \frac{y^2}{2}\}$$

3. Notiamo che (X+Y,X-Y) è un vettore gaussiano, infatti è della forma:

$$\begin{pmatrix} X+Y\\X-Y \end{pmatrix} = B \begin{pmatrix} X\\Y \end{pmatrix} = \begin{pmatrix} 1 & 1\\1 & -1 \end{pmatrix} \begin{pmatrix} X\\Y \end{pmatrix}$$

dove $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ è invertibile, quindi ha legge $\mathbf{N}(\mu_3, E)$, dove $\mu_3 = B \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ e $E = BB^T = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.

Osservando gli elementi sull' antidiagonale della matrice di convarianza E, notiamo che le componenti X-Y ed X+Y sono scorrelate e quindi indipendenti.

Soluzione esercizio 3.

Notiamo innanzitutto che $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$, $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ sono vettori gaussiani essendo "sottovettori" di un vettore gaussiano e X_1-2X_3 è una variabile aleatoria gaussiana essendo combinazione lineare di componenti di un vettore gaussiano.

1. Il vettore $\left(\begin{array}{c} X_1 \\ X_3 \end{array} \right)$ ha valore atteso e varianza

$$\left(\begin{array}{c} 0 \\ 4 \end{array}\right), \qquad A := \left(\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array}\right).$$

Risulta

$$A^{-1} = \left(\begin{array}{cc} 1 & -1 \\ -1 & 3/2 \end{array} \right).$$

La densità continua è la funzione (delle due variabili reali $x \in y$)

$$f(x,y) = \frac{1}{2\pi\sqrt{\det A}} \exp\left(-\frac{1}{2} \begin{pmatrix} x & y-4 \end{pmatrix} A^{-1} \begin{pmatrix} x \\ y-4 \end{pmatrix}\right)$$

$$= \frac{1}{2\pi\sqrt{2}} \exp\left(-\frac{1}{2}\left(x^2 - 2x(y-4) + \frac{3}{2}(y-4)^2\right)\right).$$

2. Il vettore $\left(\begin{array}{c} X_1 \\ X_2 \end{array} \right)$ ha valore atteso e varianza

$$\left(\begin{array}{c} 0 \\ 2 \end{array}\right), \qquad B:=\left(\begin{array}{cc} 3 & -1 \\ -1 & 5 \end{array}\right).$$

La funzione generatrice dei momenti è la funzione ϕ (delle due variabili reali θ_1 e $\theta_2)$

$$\phi(\theta_1, \theta_2) = \exp\left(\left(\begin{array}{cc} \theta_1 & \theta_2 \end{array} \right) \left(\begin{array}{c} 0\\ 2 \end{array} \right) + \frac{1}{2} \left(\begin{array}{cc} \theta_1 & \theta_2 \end{array} \right) B \left(\begin{array}{c} \theta_1\\ \theta_2 \end{array} \right) \right)$$
$$= \exp\left(2\theta_2 + \frac{1}{2} \left(3\theta_1^2 - 2\theta_1\theta_2 + 5\theta_2^2 \right) \right).$$

Le variabile aleatoria X_1-2X_3 ha valore atteso e varianza

$$E(X_1 - 2X_3) = 0 - 2 \cdot 4 = -8,$$

$$var(X_1-2X_3) = var(X_1)+4var(X_3)-4cov(X_1,X_3) = 3+4\cdot 2-4\cdot 2 = 3.$$

La funzione generatrice è la funzione ϕ (della variabile reale θ)

$$\phi(\theta) = \exp\left(-8\theta + \frac{3}{2}\theta^2\right).$$

Soluzione esercizio 4.

- 1. Essendo ciascun Y_j somma di variabili a medie nulle allora $\mathbb{E}(Y_1) = \mathbb{E}(Y_2) = 0$.
 - 2. Poiché

$$Y:=\begin{pmatrix} Y_1\\Y_2 \end{pmatrix}=A\begin{pmatrix} X_1\\X_2\\X_3 \end{pmatrix}=\begin{pmatrix} 1&2&3\\2&3&1 \end{pmatrix}\begin{pmatrix} X_1\\X_2\\X_3 \end{pmatrix}:=X,$$

con $A:=\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix},$ allora $\begin{pmatrix}Y_1\\Y_2\end{pmatrix}$ ha matrice di covarianza:

$$C := ATA^T = A^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 14 & 11 \\ 11 & 14 \end{pmatrix}$$

3. Sempre considerando che Y=AX, con A matrice 2×3 di rango 2, discende che $Y\sim \mathcal{N}(0,C)$.

4. Dal momento che $(Y_1,Y_2)^T$ è une vettore gaussiano, la somma delle componenti lo è, infatti $Y_1+Y_2=\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ e la matrice ha rango $\begin{pmatrix} 1 & 1 \end{pmatrix}$ uguale al numero di righe. Quindi $Y_1+Y_2\sim\mathcal{N}(0,50)$, dal momento che $\mathbb{E}(Y_1+Y_2)=\mathbb{E}(Y_1)+\mathbb{E}(Y_2)=0$, $\mathrm{var}Y_1+Y_2=\mathrm{var}(Y_1)+2\mathrm{cov}(Y_1,Y_2)+\mathrm{var}(Y_2)=14+22+14=50$.

Soluzione esercizio 5.

1. La variabile aleatoria W è gaussiana in quanto combinazione lineare di variabili aleatorie indipendenti gaussiane (e quindi trasformazione affine di un vettore aleatorio gaussiano). Resta solo da determinare i parametri della legge gaussiana, cioè la media e la varianza.

$$\mathbb{E}(W) = \mathbb{E}(\rho U + \sqrt{1 - \rho^2} \ V) = \rho \mathbb{E}(U) + \sqrt{1 - \rho^2} \mathbb{E}(V) = 0$$

е

$$var(W) = var(\rho U + \sqrt{1 - \rho^2} V) = \rho^2 var(U) + (1 - \rho^2) var(V) = 1.$$

2. La legge del vettore (U, W) ancora gaussiana in quanto $(U, W)^t = A(U, V)^t$, con

$$A = \begin{pmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{pmatrix}$$

e det $(A)=\sqrt{1-\rho^2}\neq 0$. Resta quindi da specificare il vettore delle medie e la matrice di covarianza. Chiaramente il vettore delle medie è il vettore nullo bidimensionale, mentre per determinare la matrice di covarianza C resta da determinare la covarianza tra U e W:

$$cov(U, W) = cov(U, \rho U + \sqrt{1 - \rho^2} V) = \rho cov(U, U) + \sqrt{1 - \rho^2} cov(U, V) = \rho.$$

Possiamo quindi concludere che

$$C = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.$$

3. Le componenti del un vettore gaussiano (U, W) sono indipendenti se e solo se cov(U, W) = 0, e questo succede se e solo se $\rho = 0$.

Soluzione esercizio 6.

Si noti che Q_F è non decrescente (lo è per qualsiasi funzione F), continua da sinistra. Quest'ultima proprietà si ricava facilmente dalla seguente: se $\{A_i\}$ è una sequenza di sottoinsiemi di uno spazio con la proprietà dell'estremo inferiore (ed esempio \mathbb{R}) tale che $A_i\supseteq A_j$ per $i\ge j$ (risp. $i\le j$) allora $\lim_i\inf A_i=\inf \cup_i A_i$ (risp. $\lim_i\inf A_i=\inf \cap_i A_i$).

L'insieme $\{t: F(t) \geq s\}$ è non vuoto e limitato inferiormente per ogni $s \in (0,1)$ (per la proprietà di limite a $+/-\infty$ di F). Allora

$$F(Q_F(x)) = \lim_{s \downarrow Q_F(x)} F(s) \ge x$$

per la continuità da destra e

$$Q_F(F(t)) = \inf\{s : F(s) \ge F(t)\} \le t$$

poiché F è crescente.

Se vale $F(Q_F(t)) = x$ allora $x \in \text{Rg}(f)$, viceversa se $F(\alpha) = x$ allora $Q_F(x) \le \alpha$ e quindi, essendo F crescente, $x \le F(Q_F(x)) \le F(\alpha) = x$.

Nel secondo caso, se $Q_F(F(t)) = t$ per ogni t allora per ogni t > s si ha F(t) > F(s) e quindi $\{t\} = F^{-1} \circ F(t)$, il viceversa è banale.

Soluzione esercizio 7.

Osserviamo innanzitutto che

$$t \ge Q_F(s) \iff s \le F(t).$$

Infatti dall'esercizio precedente

$$t \ge Q_F(s) \Longrightarrow F(t) \ge F(Q_F(s)) \ge s;$$

viceversa

$$s \le F(t) \Longrightarrow Q_F(s) \le Q_F(F(t)) \le t.$$

Pertanto, visto che la misurabilità di Q_F è garantita dalla continuità da destra, rimane da osservare che

$$m(s \in (0,1) : Q_F(s) < t) = m(s \in (0,1) : s < F(t)) = F(t).$$

Ricordiamo che $\{x: F(x)>\lim_{s\to x^-}F(s)\}$ è al più numerabile.

Ovviamente Q_F^+ risulta crescente e continua da destra, si dimostra facilmente, utilizzando un ragionamento simile a quello dell'esercizio precedente, che

$$\lim_{s \to x^{+}} Q_{F}(s) = Q_{F}^{+}(x) = \lim_{s \to x^{+}} Q_{F}^{+}(s)$$

$$\lim_{s \to x^{-}} Q_F(s) = Q_F(x) = \lim_{s \to x^{-}} Q_F^{+}(s).$$

Pertanto Q_F^+ risulta misurabile.

Osserviamo quindi che dalla definizione

$$Q_F^+(x) := \inf\{s : F(s) > x\}$$

si ha immediatamente che $Q_F^+(x) \ge Q_F(x)$ e vale la disuguaglianza stretta in x se e solo se $F^{-1}(x)$ contiene un intervallo aperto. Pertanto, poiché in uno

spazio topologico separabile un insieme di set ad interno non vuoto e mutualmente disgiunti è al più numerabile allora $D := \{x : Q_F^+(x) > Q_F(x)\}$ è al più numerabile e quindi $m(Q_F^+ = Q_F) = 1$.

L'ultima proprietà si ricava dal fatto che X=Y \mathbb{P} -q.c. implica $\mathbb{P}_X=\mathbb{P}_Y$ e quindi $F_X=F_Y$.

Soluzione esercizio 8.

Dalla continuità di F si ha che

$$F(Q_F(s)) = 2 e Q_F^+(F(t)) = t$$

dove $Q_F^+(t) := \sup\{s : F(s) \le t\}$. Pertanto, poiché in generale

$$\lim_{s \uparrow Q_F^+(t)} F(s) \le \mathbb{P}(F \circ X \le t) \le F(Q_F^+(t))$$

nel caso continuo si ha

$$\mathbb{P}(F \circ X \le t) = t \qquad \forall t \in (0, 1).$$

Soluzione esercizio 9.

Si ϕ la funzione di ripartizione della legge gaussiana standard e $q \equiv \phi^{-1}$ la sua funzione quantile. Pertanto, per un esercizio precedente Y := q è una variabile gaussiana standard su (0,1). Sia quindi

$$Y_{\alpha}(s) := \begin{cases} y(s) & |y(s)| \le \alpha \\ y(1/2 - s) \equiv -y(s) & |y(s)| > \alpha \end{cases}$$

dove $\alpha \geq 0$. Pertanto non è difficile verificare che

$$\mathbb{P}(Y_{\alpha} \leq t) = \begin{cases} \mathbb{P}(Y \leq t) = \phi(t) & |t| \geq \alpha \\ \mathbb{P}(Y \leq -\alpha) + \mathbb{P}(-\alpha < Y_{\alpha} \leq t) = \mathbb{P}(Y \leq -\alpha) + \mathbb{P}(-\alpha < Y \leq t) = \phi(t) & |t| < \alpha. \end{cases}$$

Inoltre $\mathbb{E}(Y) = \mathbb{E}(Y_{\alpha}) = 0$ mentre la funzione

$$h(\alpha) := \mathbb{E}(YY_{\alpha}) \equiv \mathbb{E}(Y^2 \mathbb{1}_{\{Y(s) \geq \alpha\}} - Y^2 \mathbb{1}_{\{Y(s) < \alpha\}})$$

è continua per il teorema di convergenza monotona, strettamente decrescente e $\lim_{\alpha \to 0^+} h(\alpha) = +1 \lim_{\alpha \to +\infty} h(\alpha) = -1$, quindi esiste (un unico) α_0 tale che $\mathbb{E}(YY_{\alpha_0}) = 0$. Tuttavia

$$\mathbb{P}(Y \le -\alpha_0, Y_{\alpha_0} \le -\alpha_0) = \mathbb{P}(Y \le -\alpha_0) \neq \mathbb{P}(Y \le -\alpha_0)^2 \mathbb{P}(Y \le -\alpha_0) \mathbb{P}(Y_{\alpha_0} \le -\alpha_0).$$

Ovviamente, visto che per un vettore gaussiano (X,Y) (o, equivalentemente, se aX+bY è gaussiano per ogni $a,b\in\mathbb{R}$), due componenti sono scorrelate se e solo se sono indipendenti, si ha che questo è un controesempio per tutti i punti del quesito.

Soluzione esercizio 10.

Notiamo innanzitutto che $(S_N, N-S_N) \in \mathbb{N} \times \mathbb{N}$. Quindi se troviamo due funzioni $f_1, f_2 : \mathbb{N} \to [0, +\infty)$ tali che $\mathbb{P}(S_N = k, N-S_N = h) = f_1(k)f_2(h), \ \forall (k, h) \in \mathbb{N} \times \mathbb{N}$ abbiamo mostrato, in analogia con il caso di un vettore assolutamente continuo, che S_N ed $N-S_N$ sono indipendenti. Inoltre f_1 e f_2 sono, a meno di costanti moltiplicative, le densità marginali di S_N ed $N-S_N$. Calcoliamo

$$\mathbb{P}(S_N = k, N - S_N = h) = \mathbb{P}(S_{h+k} = k, N = k+h) = \mathbb{P}(S_{h+k} = k)\mathbb{P}(N = k+h)$$
$$= \binom{h+k}{k} p^k (1-p)^h \frac{e^{-\lambda} \lambda^{k+h}}{(k+h)!}$$

[Nel secondo passaggio abbiamo utilizzato l'ipotesi di indipendenza.] Riscrivendo l'ultima espressione otteniamo che:

$$\mathbb{P}(S_{h+k} = k, N = k+h) = \binom{h+k}{k} p^k (1-p)^h \frac{e^{-\lambda} \lambda^{k+h}}{(k+h)!} = \frac{(\lambda p)^k e^{-\lambda p}}{k!} \frac{(\lambda (1-p))^h e^{-\lambda (1-p)}}{h!}$$
$$= f_1(k) f_2(k) \qquad \forall (k,h) \in \mathbb{N} \times \mathbb{N}$$

Da ciò deduciamo che S_N ed $N-S_N$ sono indipendenti e che $S_N \sim \text{Poisson } (\lambda p)$, $N-S_N \sim \text{Poisson } (\lambda(1-p))$.