Statistica Matematica A

ENG A-Z

Esercitatori: dott.ssa E. Rosazza - dott. F. Zucca Esercitazione # 1

1 Esercizi Statistica Descrittiva

Esercizio 1 I gruppi sanguigni di 12 persone sono

Si costruisca la tabella delle distribuzioni di frequenza e diagramma a barre.

Esercizio 2 Un certo macchinario produce lotti di 100 pezzi ciascuno. Il numero di pezzi difettosi in 25 lotti ispezionati è

- 1. Costruire le tabelle di distribuzione delle frequenze e l'istogramma. Determinare la media, i quartili, il quantile 0.8, la moda, la varianza campionaria, la differenza interquartile ed il range.
- 2. Per sbaglio, un impiegato scambia nell'istogramma le frequenze dell' 1 e del 4. La moda e la media dei dati così modificati cambiano rispetto a quelle dei dati originali?

Esercizio 3 Una compagnia di assicurazioni ha rilevato il numero di incidenti nel periodo 1996-2000 relativo a 25 assicurati

- 1) Rappresentare i dati con un istogramma.
- 2) Calcolare media e varianza.
- 3) Calcolare i quartili.
- 4) Con quale frequenza non si è dovuto risarcire più di un sinistro?

Esercizio 4 I dati di un esperimento vengono raggruppati in 4 classi la cui distribuzione di frequenza è $Classe[0-2) = 0.1 \ Classe[2-4) = 0.2 \ Classe[4-6) = 0.4 \ Classe[6-8] = 0.3 \ Stimare:$

- 1) la media e la varianza;
- 2) le classi contenenti i quartili $[R: q_{0.25} \in Cl[2,4), q_{0.5} \in Cl[4,6), q_{0.75} \in Cl[6,8)].$

2 Esercizi preliminari

Esercizio 5 (es. 3.11 in Montgomery)

Per misurare accuratamente dei pesi viene usata una scala digitale. Sia X la variabile aleatoria che indica la misurazione fatta usando questa scala e si considerino i seguenti intervalli di valori di misurazione:

A: peso supera i 20 grammi

 $B: peso \ \grave{e} \ inferiore \ o \ uguale \ a \ 15 \ grammi$

C: peso è compreso tra 15 e 24 grammi (estremi esclusi).

Si conoscono le seguenti probabilità:

$$P(X \in A) = 0.5$$

$$P\left(X \in B\right) = 0.3$$

$$P\left(X \in C\right) = 0.6$$

- a) A e B sono mutuamente disgiunti? B e C? A e C?
- b) Descrivere A^c e determinarne la probabilità.
- c) Descrivere C^c e determinarne la probabilità.
- d) Determinare $P(15 < X \le 20)$.

Esercizio 6 (es. 3.10 in Montgomery)

Siano A, B e C insiemi a due a due disgiunti con

$$P\left(X \in A\right) = 0.2$$

$$P(X \in B) = 0.3$$

$$P\left(X \in C\right) = 0.5$$

Determinare:

- a) $P(X \in A^c)$
- b) $P(X \in B^c)$
- c) $P(X \in C^c)$
- $d) P(X \in A \cup B)$
- $e) P(X \in A \cup C)$

Esercizio 7 (es. 3.15 e 3.16 in Montgomery)

Sia~X~la~durata~(in~ore)~di~un~laser~semiconduttore~con~le~seguenti~probabilità:

$$P(X \le 5000) = 0.05$$

$$P(5000 < X \le 7000) = 0.5$$

$$P(X > 7000) = 0.45$$

- a) Determinare $P(X \le 7000)$
- b) Determinare P(X > 5000)
- c) Supponiamo ora che ci siano tre laser indipendenti tutti soddisfacenti le ipotesi precedenti. Calcolare:
 - 1) la probabilità che tutti e tre i laser funzionino per più di 7000 ore;
 - 2) la probabilità che tutti e tre i laser funzionino per più di 5000 ore;
 - 3) nessuno dei tre laser funzioni per più di 7000 ore.

3 Variabili continue

Esercizio 8 (Eserciziario Baldi, Ladelli, ...)

Sia X una variabile aleatoria con funzione di ripartizione:

$$F(x) = \begin{cases} 0, & se \ x < 0\\ \frac{1}{50}x^2, & se \ 0 \le x < 5\\ -\frac{1}{50}x^2 + \frac{2}{5}x - 1, & se \ 5 \le x < 10\\ 1, & se \ x \ge 10 \end{cases}$$

- a) Disegnare F. Quali valori può assumere la variabile aleatoria (continua) X?
 - b) Mostrare che X ha densità e calcolarla.
 - c) Calcolare il valore atteso di X.

Esercizio 9 (eserciziario Baldi, Ladelli, ...)

Si consideri la funzione

$$f(x) = \begin{cases} \frac{c}{x^2}, & \text{se } x > 1\\ 0, & \text{se } x \le 1 \end{cases}$$

- a) Determinare $c \in \mathbb{R}$ tale che f sia una funzione di densità.
- b) Esistono il valore atteso e la varianza di X? Se sì, calcolarli.

Esercizio 10 (es. 3.23 in Montgomery)

La funzione di densità del tempo (in ore) di rottura di una componente elettronica sia data da

$$f(x) = \frac{1}{1000}e^{-\frac{x}{1000}}, per x > 0.$$

- a) Determinare la probabilità che tale componente duri più di 3000 ore prima di rompersi.
- b) Determinare la probabilità che tale componente si rompa nell'intervallo di tempo tra 1000 e 2000 ore.

- c) Determinare la probabilità che tale componente si rompa prima di 1000 ore.
- d) Determinare il numero di ore in cui con probabilità pari al 10% il componente si è rotto.

Esercizio 11 (es. 3.22 in Montgomery)

Sia

$$f(x) = \frac{3}{2}x^2$$
, per $-1 < x < 1$.

Determinare:

- 1. P(X > 0)
- 2. $P(X > \frac{1}{2})$

3.
$$P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right), P\left(|X| \le \frac{1}{2}\right) e P\left(|X| \ge \frac{1}{2}\right)$$

- 4. P(X < -2)
- 5. $P(X < 0 \text{ oppure } X > -\frac{1}{2})$
- 6. il valore $y \in \mathbb{R}$ tale che P(X > y) = 0.05

Esercizio 12 (es. 3.133 in Montgomery)

Determinare la costante $k \in \mathbb{R}$ tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la varianza di X.

- 1. $f(x) = kx^2$, per 0 < x < 4
- 2. f(x) = k(1+2x), per 0 < x < 2
- 3. $f(x) = ke^{-x}$, per x > 0.

4 Variabili discrete

Esercizio 13 (es. 3.59 in Montgomery)

Un'automobile può essere venduta con una serie di optionals. La funzione di massa f del numero di optionals scelti dal cliente è data da:

- 1. Determinare la probabilità che un cliente scelga meno di 9 optionals.
- 2. Determinare la probabilità che un cliente scelga più di 11 optionals.
- 3. Determinare la probabilità che un cliente scelga un numero di optionals compreso tra 8 e 12 (estremi inclusi).

- 4. Determinare la funzione di ripartizione di X.
- 5. Calcolare il valore atteso e la varianza degli optionals scelti.

Esercizio 14 Consideriamo le seguenti funzioni F e G:

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2}, & 0 \le x < 1\\ \frac{3}{4}, & 1 \le x < 4\\ 1, & x \ge 4 \end{cases}$$

$$G(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2}, & 0 \le x \le 1\\ \frac{3}{4}, & 1 < x < 4\\ 1, & x \ge 4 \end{cases}$$

- 1. Quale delle due è una funzione di ripartizione?
- 2. Risalire a X.
- 3. Calcolare il valore atteso di X.

Esercizio 15 (es. 3.135 in Montgomery)

Determinare la costante $c \in \mathbb{R}$ tale per cui la seguente funzione è una funzione di massa:

$$f(x) = cx$$
, $per x = 1, 2, 3, 4$.

5 Svolgimenti

Soluzione esercizio 2.

1. La media è

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \equiv \frac{1}{n} \sum_{i=1}^{k} \alpha_i n_i \equiv \sum_{i=1}^{k} \alpha_i p_i = 2.88;$$

dove la seconda e terza formula rappresentano, rispettivamente, la media per dati raggruppati in funzione delle frequenze assolute e la media per dati raggruppati in funzione delle frequenze relative. Ricordiamo la formula per il calcolo del quantile $\alpha \in (0,1)$

$$Q(\alpha) := \begin{cases} x_{k+1} & \text{se } k < n\alpha < k+1, \ k \in \mathbb{N} \\ (x_k + x_{k+1})/2 & \text{se } n\alpha = k, \ k \in \mathbb{N}, \end{cases}$$

da cui i quartili risultano $Q_1:=Q(0.25)=1,\ Q_2:=Q(0.5)=2,\ Q_3:=Q(0.75)=4;$ il quantile 0.8 è 4.5; la moda 1; la varianza campionaria

$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \equiv \frac{1}{n-1} \sum_{i=1}^{n} x_i^2 - \frac{n}{n-1} \overline{x}^2 \equiv \frac{1}{n-1} \sum_{i=1}^{k} \alpha_i^2 n_i - \frac{n}{n-1} \overline{x}^2 = 4.5267;$$

la differenza interquartile $Q_3 - Q_1 = 3$ ed il range $\max\{x_i : i = 1, \dots, n\} - \min\{x_i : i = 1, \dots, n\} = 8$.

2. Le frequenze assolute dei dati originali sono: $n_0 = 1$; $n_1 = 7$; $n_2 = 5$; $n_3 = 5$; $n_4 = 2$; $n_5 = 2$; $n_7 = 2$; $n_8 = 1$; mentre quelle dei dati scambiati $n_0^* = 1$; $n_1^* = 2$; $n_2^* = 5$; $n_3^* = 5$; $n_4^* = 7$; $n_5^* = 2$; $n_7^* = 2$; $n_8^* = 1$.

Soluzione esercizio 3.

La media è 1.68; la varianza è 3.1433. Calcoliamo i quartili che risultano 0,1,2. Nel $0.56 \equiv 56\%$ non si è dovuto risarcire più di un sinistro.

Soluzione esercizio 4.

Immaginiamo che la distribuzione sia uniforme all'interno di ogni classe (oppure, in ogni caso, quando non si hanno informazioni più precise, la "migliore" scelta è attribuire ad ogni elemento della classe il valore medio tra gli estremi) pertanto si calcolano: la media 4.8 e la varianza 3.56; le classi contenenti i quartili $q_{0.25} \in \text{Cl}[2,4), q_{0.5} \in \text{Cl}[4,6), q_{0.75} \in \text{Cl}[6,8).$

Soluzione esercizio 5.

a) $A \cap B = \emptyset$ allora disgiunti

 $B\cap C=\emptyset$ allora disgiunti $A\cap C\neq\emptyset$ allora NON mutuamente disgiunti

b) A^c : peso è inferiore o uguale a 20 grammi

$$P(X \in A^c) = 1 - P(X \in A) = 0.5$$

c) C^c : peso è ≤ 15 grammi o ≥ 24 grammi $P\left(X \in C^c\right) = 1 - 0.6 = 0.4$

d)
$$P(15 < X \le 20) = P(X \le 20) - P(X \le 15) = P(X \in A^c) - P(X \in B) = 0.2$$

Soluzione esercizio 6.

- a) $P(X \in A^c) = 1 P(X \in A) = 0.8$
- b) $P(X \in B^c) = 1 P(X \in B) = 0.7$
- c) $P(X \in C^c) = 1 P(X \in C) = 0.5$
- d) $P(X \in A \cup B) = P(X \in A) + P(X \in B) = 0.5$, siccome A e B sono disgiunti
- e) $P(X \in A \cup C) = P(X \in A) + P(X \in C) = 0.7$, siccome $A \in C$ sono disgiunti

Soluzione esercizio 7.

- a) $P(X \le 7000) = 1 P(X > 7000) = 0.55$
- b) P(X > 5000) = 1 P(X < 5000) = 0.95
- c) 1) $P(X_1 > 7000; X_2 > 7000; X_3 > 7000) = (0.45)^3$, siccome i tre laser sono indipendenti
 - 2) $P(X_1 > 5000; X_2 > 5000; X_3 > 5000) = (0.95)^3$, siccome i tre laser sono indipendenti
 - 3) $P(X_1 \le 7000; X_2 \le 7000; X_3 \le 7000) = (0.55)^3$, siccome i tre laser sono indipendenti

Soluzione esercizio 8.

- a) I valori assunti (con probabilità positiva) dalla v.a. X sono compresi nell'intervallo [0,10].
- b) F è derivabile con continuità e la funzione di densità f=F' di X risulta essere:

$$f(x) = \begin{cases} \frac{\frac{1}{25}x}{-\frac{1}{25}x + \frac{2}{5}}, & 0 < x < 5\\ -\frac{1}{25}x + \frac{2}{5}, & 5 \le x < 10\\ 0, & altrove \end{cases}$$

Quest'ultima è Riemann-integrabile pertanto a norma del Teorema fondamentale del calcolo ammette F come primitiva. (Per una caratterizzazione delle funzioni di ripartizione che ammettono densità è necessario il concetto di funzione assolutamente continua.

c)
$$E[X] = \int_{\mathbb{R}} x f(x) dx = \int_{0}^{5} \frac{1}{25} x^{2} dx + \int_{5}^{10} \left(-\frac{1}{25} x^{2} + \frac{2}{5} x \right) dx = 5$$

Osservazione Per quanto riguarda l'esistenza di una densità si segnalano alcuni risultati: focalizzate la vostra attenzione sul numero (5). (1) Una funzione è una primitiva (in senso di Lebesgue) di una funzione assolutamente integrabile in (a,b) se e solo se è assolutamente continua in (a,b). (2) Una funzione è una primitiva (in senso di Lebesgue) di una funzione assolutamente integrabile in ogni sottointervallo aperto di (a,b) se e solo se è assolutamente continua in ogni sottointervallo aperto di (a,b). (3) Se una funzione F è derivabile in (a,b) (tranne al più un numero finito di punti dove però è continua) e la sua derivata è Riemann-integrabile allora F è la primitiva (in senso di Riemann) della sua derivata. (4) Se F è derivabile ovunque tranne al più un insieme finito di punti (dove però è continua) ed F'. (5) Una funzione di ripartizione che sia derivabile ovunque tranne al più un insieme finito di punti (dove però è continua) ammette densità in senso di Lebesgue (o in senso di Riemann se la derivata è Riemann-integrabile).

Soluzione esercizio 9.

- a) $f \ge 0$ e $\int_{\mathbb{R}} f(x) dx = \int_{1}^{+\infty} \frac{c}{x^2} dx = \left(-\frac{c}{x}\right)\Big|_{1}^{+\infty} = c$. Di conseguenza, è necessario e sufficiente che c=1.
- b) Il valore atteso non è finito.

Soluzione esercizio 10.

a)
$$P(X > 3000) = \int_{3000}^{+\infty} \frac{1}{1000} e^{-\frac{x}{1000}} dx = \left(-e^{-\frac{x}{1000}}\right)\Big|_{3000}^{+\infty} = e^{-3}$$

b)
$$P(1000 < X < 2000) = \int_{1000}^{2000} \frac{1}{1000} e^{-\frac{x}{1000}} dx = -e^{-2} + e^{-1}$$

c)
$$P(X < 1000) = \dots = 1 - \frac{1}{e}$$

d)
$$P(X \le y) = \int_0^y \frac{1}{1000} e^{-\frac{x}{1000}} dx = -e^{-y/1000} + 1 = 0.1$$
 allora $y = -1000 \ln(0.9) \approx 105.36$.

Osserviamo che questo valore è il numero di ore al quale la percentuale attesa di componenti guasti è il 10%; dalla legge forte dei grandi numeri si ha altresì che, se il numero di componenti in uso tende all'infinito, allora il limite della percentuale di quelli guasti tende (P-q.c.) al 10%.

Soluzione esercizio 11.

1.
$$P(X > 0) = \int_0^1 f(x) dx = \left(\frac{x^3}{2}\right)\Big|_0^1 = \frac{1}{2}$$

2.
$$P(X > \frac{1}{2}) = \int_{\frac{1}{2}}^{1} f(x) dx = \left(\frac{x^3}{2}\right)\Big|_{\frac{1}{2}}^{1} = \frac{7}{16}$$

3.
$$P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right) = P\left(|X| \le \frac{1}{2}\right) = \frac{1}{8}$$

 $P\left(|X| \ge \frac{1}{2}\right) = P\left(X \le -\frac{1}{2} \text{ oppure } X \ge \frac{1}{2}\right) = 1 - P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right) = \frac{7}{8}$

d)
$$P(X < -2) = 0$$

4.
$$P(X < 0 \text{ oppure } X > -\frac{1}{2}) = P(X < 0) + P(X > -\frac{1}{2}) - P(-\frac{1}{2} < X < 0) = \frac{1}{2} + \frac{9}{16} - \frac{1}{16} = 1$$

5. y deve risolvere:
$$1 - \frac{y^3}{2} = 0.1$$
. Si ottiene $y = 0.965$

Soluzione esercizio 12.

1.
$$\int_0^4 kx^2 dx = k \frac{64}{3}$$
 allora $k = \frac{3}{64}$
 $E[X] = \int_0^4 kx^3 dx = 3$

2.
$$k \int_0^2 (1+2x) dx = 6k$$
 allora $k = \frac{1}{6}$
$$E[X] = \dots = \frac{11}{9}$$

3.
$$\int_0^{+\infty} ke^{-x} dx = k \text{ allora } k = 1$$
$$E[X] = \dots = 1$$

Soluzione esercizio 13.

1.
$$P(X < 9) = 0.040 + 0.0130 = 0.170$$

2.
$$P(X > 11) = 0.050 + 0.050 = 0.1$$

3.
$$P(8 \le X \le 12) = 0.130 + 0.190 + 0.300 + 0.240 + 0.050 + 0.910$$

4.

$$F(x) = \begin{cases} 0, & x < 7 \\ 0.040, & 7 \le x < 8 \\ 0.170, & 8 \le x < 9 \\ 0.360, & 9 \le x < 10 \\ 0.660, & 10 \le x < 11 \\ 0.900, & 11 \le x < 12 \\ 0.950, & 12 \le x < 13 \\ 1 & x \ge 13 \end{cases}$$

5.
$$\mathbb{E}[X] = \sum_{i} x_i \mathbb{P}_X(x_i) = 9.92$$
, $\operatorname{var}(X) = \sum_{i} (x_i - \mathbb{E}[X])^2 p_X(i) \equiv \sum_{i} x_i^2 p_X(i) - \mathbb{E}[X]^2 = 100.36 - 9.92^2 = 1.9536$.

Soluzione esercizio 14.

- 1. F è una funzione di ripartizione, mentre G no in quanto non è continua da destra in x=1
- 2. X assume (con probabilità positiva) i valori 0,1,4
- 3. $E[X] = \frac{5}{4}$

Soluzione esercizio 15.

cdeve esser positiva, inoltre deve soddisfare 1=c+2c+3c+4c, quindi per $c=\frac{1}{10}$ la funzione f è di massa.