20997

Matematica II: Analisi B Docente: Dott. F. Zucca

I prova in Itinere - 8 maggio 2006

Nome e cognome: Matricola:

 $\bf Esercizio~1~Si$ studi la convergenza puntuale ed uniforme della serie di potenze

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 e^n - n}.$$

Soluzione. Da un noto teorema il raggio di convergenza

$$R = \limsup_{n \to \infty} \sqrt[n]{n^2 e^n - n} = \lim_{n \to \infty} \sqrt[n]{n^2 e^n - n} = e$$

Poiché $ne^n > 1$ per ogni $n \ge 1$, la serie a termini positivi

$$\sum_{n=1}^{\infty} \frac{e^n}{n^2 e^n - n} < +\infty$$

dal momento che $e^n/(n^2e^n-n)\sim 1/n^2$ che è sommabile. Pertanto essendo assolutamente convergente in x=e è uniformemente convergente in $\{x:|x|\leq e\}$.

Esercizio 2 Data la funzione

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- 1. Dimostrare che la funzione è continua in (0,0)
- 2. Calcolare la derivate direzionali in (0,0) rispetto ad un versore generico $\mathbf{v} = (v_1, v_2)$
- 3. Verificare se vale o no la formula del gradiente $(D_{\mathbf{v}}f(0,0) = \nabla f(0,0) \cdot \mathbf{v})$
- 4. La funzione è differenziabile nell'origine?
- 5. L'origine è un estremante?
- 6. Determinare tutti gli estremanti e specificarne la natura.

Soluzione.

- 1. La funzione è continua; per verificarlo passare alle coordinate polari e mostrare che il limite per $\rho \to 0$ è 0 uniformemente rispetto a $\theta \in [0, 2\pi)$.
- 2. Lungo un versore qualsiasi

$$D_{(v_1,v_2)} = \lim_{t \to 0} \frac{1}{t} \frac{t^3 v_1 v_2^2}{t^2 (v_1^2 + v_2^2)} = v_1 v_2^2.$$

In particolare le derivate parziali sono nulle.

- 3. Non si applica la formula perché $f_x = 0$ e $f_y = 0$ implica $D_{\mathbf{v}} f(0,0) \equiv 0$ che contraddice il risultato del punto precedente.
- 4. Non è differenziabile perché non vale la formula del gradiente.
- 5. Poiché la funzione non è costante in nessun intorno aperto dell'origine e vale f(x,y) = -f(-x,y) l'origine, in cui la funzione è nulla, non può essere un estremante.
- 6. L'origine è stata discussa al punto precedente. Poiché il segno della funzione al di fuori degli assi coincide con il segno di x (mentre è nulla sugli assi) si ha immediatamente che i punti del tipo (x,0) con x>0 (risp. x<0) sono minimi (risp. massimi) locali deboli, mentre i punti

del tipo (0, y) non possono essere estremanti perché la funzione cambia segno in ogni intorno. Al di fuori degli assi, per esempio lungo una retta di equazioni parametriche (v_1t, v_2t) la funzione vale

$$f(v_1t, v_2t) = \frac{tv_1v_2^2}{\left(v_1^2 + v_2^2\right)}$$

che non ammette estremanti.

Lo stesso risultato si sarebbe potuto ottenere con lo studio del differenziale.

Esercizio 3 Cercare la soluzione generale della seguente equazione differenziale

$$y' = y\sin(x) + \sin(x)\cos(x).$$

Definita φ la soluzione soddisfacente $\varphi(-\pi/2)=1$, calcolare

$$\int_{A} (u-v)\varphi(u+v)\mathrm{d}u\mathrm{d}v$$

dove $A = \{|u| \le 1, |v| \le 1\}.$

Suggerimento: si ricordi che integrando opportunamente per parti una funzione del tipo $e^{f(x)}f'(x)g(x)$ si ottiene $e^{f(x)}g(x) - \int e^{f(x)}g'(x)dx$. Prima di affrontare il calcolo esplicito dell'integrale si studino eventuali simmetrie dell'integranda e dell'insieme di integrazione.

Soluzione. La soluzione generale dell'omogenea è $y = ke^{-\cos(x)}$; la soluzione particolare è pertanto della forma

$$y = e^{-\cos(x)}v(x)$$

dove v soddisfa

$$v' = e^{-\cos(x)}\cos(x)\sin(x).$$

Integrando per parti si ottiene una primitiva $v=(1-\cos(x))e^{\cos(x)}$ e la soluzione generale

$$y = ke^{-\cos(x)} - (\cos(x) - 1).$$

Imponendo la condizione $y(-\pi/2) = 1$ si ha k = 0 e quindi

$$\varphi(x) = -(\cos(x) - 1).$$

Con la trasformazione di coordinate

$$x(u,v) := u + v$$
 $y(u,v) := u - v$

il cui determinante è pari a 2 si ha

$$\int_{A} (u-v)(1-\cos(u+v))dudv = \frac{1}{2} \int_{O} y(1-\cos(x))dxdy$$

dove $Q=\{|x+y|\leq 2, |x-y|\leq 2\}$. poiché l'insieme di integrazione è simmetrico rispetto all'asse delle x e l'integranda (che è integrabile) è dispari rispetto a y, si ha che l'integrale è nullo.